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Adina Ciomaga (Université Paris Diderot) HJnet Final Conference, Rennes June 1, 2016 2 / 27



Framework

Partial Integro Differential Equations (PIDEs)

Problem

Long Time Behavior of solutions of Partial Integro Differential Equations (PIDEs){
ut + F (x ,Du,D2u, I[x , u]) = 0, in Rd × (0,+∞)

u(x , 0) = u0(x), in Rd
(1)

The nonlinearity F is degenerate elliptic, i.e.

F (x , p,X , l1) ≤ F (x , p,Y , l2) if X ≥ Y , l1 ≥ l2, (E)

I[x , u] is an integro-differential operator of the form

I[x , u] =

∫
Rd

(u(x + z , t)− u(x , t)− Du(x , t) · z1B (z))µx (dz)

(µx )x family of Lévy measures s.t. supx

∫
Rd min(1, |z |2)µx (dz) <∞.
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I[x , u] is a Lévy-Itô operator of the form
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∫
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Partial Integro Differential Equations (PIDEs)
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Long Time Behavior of solutions of Partial Integro Differential Equations (PIDEs){
ut + F (x ,Du,D2u, I[x , u]) = 0, in Rd × (0,+∞)

u(x , 0) = u0(x), in Rd
(1)

The nonlinearity F is degenerate elliptic, i.e.

F (x , p,X , l1) ≤ F (x , p,Y , l2) if X ≥ Y , l1 ≥ l2, (E)

Fractional Laplacian of order β ∈ (0, 2)

(−∆)β/2u =

∫
Rd

(u(x + z , t)− u(x , t)− Du(x , t) · z1B (z))
dz

|z |d+β
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Framework

Partial Integro-Differential Equations. Lévy Processes

Figure: Stable Levy process. Jump discontinuities are represented by vertical lines.

The infinitezimal generator of a Lévy process

Lu(x) = b · Du︸ ︷︷ ︸
drift

+ tr(AD2u)︸ ︷︷ ︸
diffusion

+

∫
Rd

(
u(x + j(x , z))− u(x)− Du · j(x , z)1B (z)

)
µ(dz)︸ ︷︷ ︸

jumps

.
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Framework

Partial Integro-Differential Equations. Lévy Processes

Figure: Stable Levy process. Jump discontinuities are represented by vertical lines.

The infinitezimal generator of a wider class of Markov processes of Courrège form

Lu(x) = c(x)u(x)︸ ︷︷ ︸
killing

+ b(x) · Du︸ ︷︷ ︸
drift

+ tr(A(x)D2u)︸ ︷︷ ︸
diffusion

+

∫
Rd

(
u(x + z)− u(x)− Du · z K (x , z)

)
µx (dz)︸ ︷︷ ︸

jumps

.
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Framework

Partial Integro-Differential Equations. Lévy Processes

Example (Drift diffusion PIDEs)

ut + (−∆)β/2u + b(x) · Du = f (x)

Example (Mixed PIDEs)

ut −∆x1u + (−∆x2 )β/2u + b(x) · Du = f (x)

with 1 < β < 2.

Example (Coercive PIDEs)

ut−tr(A(x)D2u)− I[u] + b(x)|Du|m = f (x)

where
A(x) ≥ a(x)I ≥ 0, b(x) ≥ b0 > 0,m > 2.
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LTB

LargeTime Behavior - periodic setting

Problem

Establish the long time behavior of periodic viscosity solutions:

u(x , t) = λt + v(x) + ot(1), as t →∞.

Nonlocal: Imbert, Monneau, Rouy ’07

Parabolic PDEs: Barles, Mitake, Ishii ’09, Barles and Souganidis ’06, ’01,
Barles Da Lio ’05, Dirr and Souganidis, ’95, Roquejoffre ’01

Hamilton Jacobi equations: Barles, Roquejoffre ’06, Barles Souganidis ’00
Lions, Papanicolau, Varadhan, Ishii’ 10, Namah and Roquejoffre ’99, Fathi
’98, Fathi and Mather ’00, Arisawa ’97
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LTB

LargeTime Behavior - periodic setting

Theorem (Barles, Chasseigne, C., Imbert ’13)

Under suitable assumptions, the solution of the initial value problem

ut + F (x ,D2u, I[u]) + H(x ,Du) = f (x). (2)

with u0 ∈ C 0,α and Zd periodic satisfies

u(x , t)− λt → v(x), as t∞ uniformly in x,

where v is the unique periodic solution (up to addition of constants) of the
stationary ergodic problem

F (x ,D2v , I[v ]) + H(x ,Dv) = f (x)− λ in Rd . (3)

The study relies in general on two main ingredients:

Strong Maximum Principle

Regularity of viscosity solutions
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LTB

The Ergodic Problem

To solve the ergodic problem

λ+ F (x ,D2v , I[v ]) + H(x ,Dv) = f (x) in Rd , (4)

use the classical approximation

δvδ + F (x ,D2vδ, I[vδ]) + H(x ,Dvδ) = f (x). (5)

Perron’s method and comparison principles: there exists a unique, bounded,
periodic solution vδ s.t. ||δvδ||∞ ≤ C , hence δvδ(0)→ λ as δ → 0.

Lemma

ṽδ(x) = vδ(x)− vδ(0)

is uniformly bounded and equicontinuous, hence ṽδ → v (along subsequences).
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LTB

The Ergodic Problem - Compactness Mixed PIDEs

Proof.

Argue by contradiction: assume ||vδ||∞ =: cδ →∞ as δ → 0. Then the
renormalized functions wδ = ṽδ/cδ solve

δwδ +
1

cδ
F (x , cδD

2wδ, cδI[wδ]) +
1

cδ
H(x , cδDw

δ) =
f (x)− δvδ(0)

cδ
.

Since ||wδ|| = 1, solutions are uniformly C 0,α and up to a subsequence

wδ → w , as δ → 0, uniformly in x.

The limit w is Zd periodic, C 0,α, w(0) = 0, ||w ||∞ = 1 and satisfies

F (x ,D2w , I[w ]) + H(x ,Dw) = 0. (6)

Provided the limiting equation satisfies Strong Maximum Principle, w ≡ 0!

Adina Ciomaga (Université Paris Diderot) HJnet Final Conference, Rennes June 1, 2016 9 / 27



LTB

The Ergodic Problem - Compactness Mixed PIDEs

Proof.

Argue by contradiction: assume ||vδ||∞ =: cδ →∞ as δ → 0. Then the
renormalized functions wδ = ṽδ/cδ solve
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LTB

The Ergodic Problem - Compactness Coercive PIDEs

Proof.

To fix ideas, let
H(x , p) = b(x)|p|m for m > 1.

The renormalized functions wδ = ṽδ/cδ solve

1

cm−1
δ

δwδ +
1

cm−1
δ

F (x , cδD
2wδ, cδI[wδ]) + b(x)|Dwδ|m =

f (x)− δvδ(0)

cm
δ

.

The limit w is Zd periodic, C 0,α, w(0) = 0, ||w ||∞ = 1 and satisfies

b(x)|Dw |m = 0.

Provided b(x) ≥ b0 > 0 we get Dw ≡ 0, hence w ≡ 0!
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LTB

The Convergence

Proof.

Both u(x , t) and v(x) + λt are solutions of (2). By comparison

m(t) := sup
x

(u(x , t)− λt − v(x))↘ m̄, as →∞.

Take then the Zd periodic functions w(x , t) = u(x , t)− λt and show
w(x , t + tn)→ w̄(x , t) as tn →∞, where w̄ solves{

w̄t + F (x ,D2w̄ , I[w̄ ]) + H(x ,Dw̄) = f (x)− λ, in Rd × (0,+∞)

w̄(x , 0) = v(x), in Rd
(7)

Passing to the limit in m(t + tn) as n→∞ m̄ = supx (w̄(x , t)− v(x)) By the
Strong Maximum Principle for the evolution equation above we get

w̄(x , t) = v(x) + m̄.

The conclusion follows.
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Strong Maximum Principle

Strong Maximum Principle for PIDEs

Problem

Establish Strong Maximum Principle for Dirichlet boundary value problems{
ut + F (x , t,Du,D2u,J [x , u]) = 0, in Ω× (0,T )
u = ϕ on Ωc × [0,T ].

(8)

Strong Maximum Principle and (Strong) Comparison Results

nonlocal operators: Coville ’08;

elliptic second order equations:
Bardi-Da Lio ’01, ’03, Da Lio ’04, Nirenberg ’53, Hopf ’20s;

* comparison results and Jensen-Ishii’s lemma:
Jakobsen-Karlsen ’06, Barles-Imbert ’08, Jensen ’88, Ishii ’89, Crandall, Ishii,
Lions ’90s.
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Strong Maximum Principle

Strong Maximum Principle

Theorem (C. ’11)

Anu u ∈ USC (Rd × [0,T ]) viscosity subsolution of (8) that attains a maximum
at (x0, t0) ∈ Ω× (0,T ) is constant in Ω× [0, t0].

Figure: SMaxP = horizontal and vertical propagation of maxima.
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Strong Maximum Principle

Horizontal Propagation - Translations of Measure Supports

Theorem (C. ’11)

If u attains a global maximum at (x0, t0) ∈ Rd × (0,T ), then u is constant on⋃
n≥0 An × {t0} with

A0 = {x0}, An+1 =
⋃

x∈An

(x + supp(µx )). (9)

µ(dz) =
dz

|z |d+β
.
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Strong Maximum Principle

Horizontal Propagation - Translations of Measure Supports

Example (Measures supported in the unit ball)

µ(dz) = 1B (z)
dz

|z |d+β
.

Example (Measures charging two axis meeting at the origin)

µx (dz) = 1{z1=±αz2}(z)νx (dz),

Example (Pittfall of fractional diffusion on half space)

µ(dz) = 1{z1≥0}(z)
dz

|z |d+β
.
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Strong Maximum Principle

Horizontal Propagation - Nondegeneracy of the Measure

For any x ∈ Ω there exist β ∈ (1, 2), η ∈ (0, 1)
and a constant Cµ(η) > 0 s.t. for 0 < |p| < R∫

Cη,γ(p)

|z |2µx (dz) ≥ Cµ(η)γβ−2,∀γ ≥ 1

Cη,γ(p) = {z ; (1− η)|z ||p| ≤ |p · z | ≤ 1/γ}

Theorem (C. ’11)

Under suitable nondegeneracy and scaling assumptions, if a usc viscosity
subsolution u attains a maximum at P0 = (x0, t0), then u is constant in the
horizontal component of the domain, passing through point P0.
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Strong Maximum Principle

Horizontal Propagation - Nondegeneracy of the Measure

Example (Overcome fractional diffusion on half
space)

µ(dz) = 1{z1≥0}(z)
dz

|z |d+β
, β > 1.

Theorem (C. ’11)

Under suitable nondegeneracy and scaling assumptions, if a usc viscosity
subsolution u attains a maximum at P0 = (x0, t0), then u is constant in the
horizontal component of the domain, passing through point P0.
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Strong Maximum Principle

Strong Maximum Principle

Example (SMaxP driven by differential terms)

ut − tr(σ(x)σ∗(x)D2u)−c(x)I[x , u] = f (x), in Ω× (0,T )

where σ is a positive definite matrix and c(x) ≥ 0.

Example (SMaxP driven by the nonlocal term)

ut + b(x) · Du + (−∆xu)β/2 = f (x), in Ω× (0,T )

where b(·) is a bounded vector field and the fractional exponent β > 1.

Example (SMaxP for mixed differential-nonlocal terms)

ut − a1(x)∆x1u + a2(x)(−∆x2u)β/2 = f (x), in Ω× (0,T )

where a1(x), a2(x) ≥ a0 > 0 and the fractional exponent β > 1.
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Strong Maximum Principle

Strong Comparison Principle

Theorem (C.)

If u and v are an usc viscosity subsolution, lsc viscosity supersolution s.t. u − v
attains a maximum at P0, then u − v is constant in S(P0).

Example (Mixed PIDEs)

ut − a1(x)∆x1u + a2(x)(−∆x2 )β/2u = f (x)

if the fractional exponent β > 1 and

a1(x), a2(x) ≥ a0 > 0.

Example (Coercive PIDEs)

ut − I[u] + b(x)|Du|m = f (x)

if u is Lipschitz continuous, b(x) ≥ b0 > 0 and m > 2.
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Hölder and Lipschitz Regularity

Hölder and Lipschitz Regularity

Problem

Viscosity solutions of PIDEs are C 0,α/Lipschitz continuous in space (dep. on β)

||u||C 0,α ≤ C ||u||∞.

Main approaches for proving the Hölder regularity of viscosity solutions of
local/nonlocal equations

Harnack estimates, for uniformly elliptic equations: Guillen Schwab ’11,
Silvestre Imbert ’14, Silvestre Cardaliaguet ’12, Silvestre Vicol ’12, Silvestre
’06,’11, Caffarelli, Silvestre ’09, ’11 Caffarelli Cabré ’95
Regularity and ABP estimates for a larger class of PIDEs left open!

direct viscosity methods such as Ishii-Lions’s ’90, for degenerate elliptic
equations: Barles, Chasseigne and Imbert ’11, Cardaliaguet-Rainer ’10
Lipschitz or further regularity, e.g. C 1,α left open!
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Hölder and Lipschitz Regularity

Model equations for Hölder and Lipschitz regularity

Advection fractional diffusion

ut + (−∆u)β/2 + b(x) · Du = f

Subcritical case β > 1: for b ∈ L∞ the solution is Lipschitz continuous.

Critical case β = 1: for b ∈ C τ , τ > 0 the solution is Cβ .

Supercritical case β < 1: for b ∈ C 1−β+τ , the solution is Cβ .
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Hölder and Lipschitz Regularity

Model equations for Hölder and Lipschitz regularity

Fractional difussion with superlinear gradient growth

ut − tr(A(x)D2u) + a2(x)(−∆)β/2u + b(x)|Du|k = f

with nondegenerate diffusion A(x) ≥ a1(x)I , with

a1(x) + a2(x) ≥ a0 > 0.

When β > 1: for b ∈ C 0,τ and k ≤ τ + β the solution is Lipschitz.

When β > 1: for b ∈ L∞ and k ≤ β the solution is Lipschitz continuous.

When β < 1: for b ∈ C 1−β+τ , and k ≤ β the solution is Cβ .
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Hölder and Lipschitz Regularity

Horizontal Propagation - Nondegeneracy of the Measure

Mixed ellipticity

−a1(x1)∆x1u + a2(x2)(−∆x2u)β/2 = f (x1, x2)

with ai (x) ≥ a0 > 0.

Problem

Solutions are Lipschitz continuous in the x1-variable and Hölder, resp. Lipschitz
continuous in the x2 variable if β ≤ 1, resp. β > 1.
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Hölder and Lipschitz Regularity

Partial Regularity

We give both Hölder and Lipschitz regularity results of viscosity solutions for a
general class of mixed integro-differential equations of the type

−a1(x1)∆x1u −a2(x2)Ix2 [x , u]− I[x , u]

+b1(x1)|Dx1u1|k1 +b2(x2)|Dx2u|k2 + |Du|n + cu = f (x).

Theorem (Barles, Chasseigne, C., Imbert ’12)

Any periodic continuous viscosity solution u

(a) is Lipschitz in the x2 variable, if β > 1 and k2 ≤ β, k1 = 1, n ≥ 0;

(b) is C 0,α with α < β−k2

1−k2
, if β ≤ 1 and k2 < β, k1 = 1, n ≥ 0.

(c) If b2 ∈ C 0,τ (Rd2 ), then we can deal wtih growth up to k2 ≤ β + τ .

The Lipschitz/Hölder constant depends on ||u||∞, on the dimension d, the
constants associated to the Lévy measures and on the functions a2, b2 and f .
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Hölder and Lipschitz Regularity

Insight - Proof of the Regularity Results

Classical argument for Hölder continuity: show that

max
x,y

(u(x)− u(y)− φ(|x − y |)) < 0.

where for Hölder regularity the control function is given by

φ(|x − y |) = L|x − y |α

whereas for Lipschitz by
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Insight - Proof of the Regularity Results

Classical argument for Hölder continuity: show that

max
x,y

(u(x)− u(y)− φ(|x − y |)) < 0.

where for Hölder regularity the control function is given by

φ(|x − y |) = L|x − y |α

whereas for Lipschitz by

φ(|x − y |) = L|x − y |
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Hölder and Lipschitz Regularity

Insight - Proof of the Regularity Results

Classical argument for Hölder continuity: show that

max
x,y

(u(x)− u(y)− φ(|x − y |)) < 0.

where for Hölder regularity the control function is given by

φ(|x − y |) = L|x − y |α

whereas for Lipschitz by

φ(|x − y |) = L|x − y | − ρ|x − y |1+α.
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Hölder and Lipschitz Regularity

Insight - Proof of the Regularity Results

Classical argument for Hölder continuity: show that

max
x,y

(u(x)− u(y)− φ(|x − y |)) < 0.

where for Hölder regularity the control function is given by

φ(|x − y |) = L|x − y |α

whereas for Lipschitz by

φ(|x − y |) = L|x − y | − ρ|x − y |1+α.

For partial regularity, use classical regularity arguments in one set of variables,
and uniqueness type arguments in the other variables:

ψε(x , y) = u(x1, x2)− u(y1, y2)− φ(x1 − y1)
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Hölder and Lipschitz Regularity

Insight - Proof of the Regularity Results

Classical argument for Hölder continuity: show that

max
x,y

(u(x)− u(y)− φ(|x − y |)) < 0.

where for Hölder regularity the control function is given by

φ(|x − y |) = L|x − y |α

whereas for Lipschitz by

φ(|x − y |) = L|x − y | − ρ|x − y |1+α.

For partial regularity, use classical regularity arguments in one set of variables,
and uniqueness type arguments in the other variables:

ψε(x , y) = u(x1, x2)− u(y1, y2)− φ(x1 − y1)− |x2 − y2|2

ε2
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Hölder and Lipschitz Regularity

Global regularity

A priori estimates. The regularity results can be extended to superlinear cases, by
a gradient cut-off argument.

−a1(x1)∆x1u − a2(x2)Ix2 [x , u]− I[x , u]

+b1(x1)|Dx1u1| + b2(x2)|Dx2u| + |Du|n + cu = f (x).

Theorem (Barles, Chasseigne, C., Imbert ’12)

Any periodic continuous viscosity solution u

(a) is Lipschitz continuous, if β > 1 and k2 = 1, k1 = 1, n ≥ 0;

(b) is C 0,α continuous with α < β2−k2

1−k2
, if β ≤ 1 and k2 = 1, k1 = 1, n ≥ 0.
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Hölder and Lipschitz Regularity

Global regularity

A priori estimates. The regularity results can be extended to superlinear cases, by
a gradient cut-off argument.

−a1(x1)∆x1u − a2(x2)Ix2 [x , u]− I[x , u]

+b1(x1)|Dx1u1|k1 + b2(x2)|Dx2u|k2 + |Du|n + cu = f (x).

Theorem (Barles, Chasseigne, C., Imbert ’12)

Any periodic continuous viscosity solution u

(a) is Lipschitz continuous, if β > 1 and k2 ≤ βi , k1 ≤ 2, n ≥ 0;

(b) is C 0,α continuous with α < β2−k2

1−k2
, if β ≤ 1 and k2 < βi , k1 ≤ 2, n ≥ 0.
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Hölder and Lipschitz Regularity

Extensions of the regularity results

the non-periodic setting

parabolic case

ut + F0(..., I[x , u]) + F1(..., Ix1 [x , u]) + F2(...,Jx2 [x , u]) = f (x)

fully nonlinear Bellman - Isaacs equations

sup
γ∈Γ

inf
δ∈∆

(
F γ,δ0 (...,J γ,δ) + F γ,δ1 (...,J γ,δx1

) + F γ,δ2 (...,J γ,δx2
)− f γ,δ(x)

)
= 0

multiple nonlinearities.
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Hölder and Lipschitz Regularity

Thank you for your attention!
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