Large Time Behavior of Periodic Viscosity Solutions of Integro-differential Equations

Adina CIOMAGA joint work with Guy Barles, Emmanuel Chasseigne and Cyril Imbert

Université Paris Diderot, Laboratoire Jacques Louis Lions

June 1, 2016

Outline

- 1 Framework: Integro-Differential Equations
- 2 Large Time Behavior
- 3 Strong Maximum Principle
- 4 Hölder and Lipschitz Regularity

Partial Integro Differential Equations (PIDEs)

Problem

Long Time Behavior of solutions of Partial Integro Differential Equations (PIDEs)

$$\begin{cases} u_t + F(x, Du, D^2u, \mathcal{I}[x, u]) = 0, & \text{in } \mathbb{R}^d \times (0, +\infty) \\ u(x, 0) = u_0(x), & \text{in } \mathbb{R}^d \end{cases}$$
 (1)

• The nonlinearity *F* is *degenerate elliptic*, i.e.

$$F(x, p, X, l_1) \le F(x, p, Y, l_2) \text{ if } X \ge Y, l_1 \ge l_2,$$
 (E)

ullet $\mathcal{I}[x,u]$ is an integro-differential operator of the form

$$\mathcal{I}[x,u] = \int_{\mathbb{R}^d} (u(x+z,t) - u(x,t) - Du(x,t) \cdot z 1_B(z)) \mu_{\mathsf{x}}(dz)$$

 $(\mu_x)_x$ family of Lévy measures s.t. $\sup_x \int_{\mathbb{R}^d} \min(1,|z|^2) \mu_x(dz) < \infty$.

Partial Integro Differential Equations (PIDEs)

Problem

Long Time Behavior of solutions of Partial Integro Differential Equations (PIDEs)

$$\begin{cases} u_t + F(x, Du, D^2u, \mathcal{I}[x, u]) = 0, & \text{in } \mathbb{R}^d \times (0, +\infty) \\ u(x, 0) = u_0(x), & \text{in } \mathbb{R}^d \end{cases}$$
 (1)

• The nonlinearity *F* is *degenerate elliptic*, i.e.

$$F(x, p, X, l_1) \le F(x, p, Y, l_2) \text{ if } X \ge Y, l_1 \ge l_2,$$
 (E)

• $\mathcal{I}[x, u]$ is a Lévy-Itô operator of the form

$$\mathcal{J}[x,u] = \int_{\mathbb{R}^d} (u(x+j(x,z)) - u(x) - Du(x) \cdot j(x,z) 1_B(z)) \mu(dz)$$

with μ a Lévy measure and j(x,z) the size of the jumps at x.

Partial Integro Differential Equations (PIDEs)

Problem

Long Time Behavior of solutions of Partial Integro Differential Equations (PIDEs)

$$\begin{cases} u_t + F(x, Du, D^2u, \mathcal{I}[x, u]) = 0, & \text{in } \mathbb{R}^d \times (0, +\infty) \\ u(x, 0) = u_0(x), & \text{in } \mathbb{R}^d \end{cases}$$
 (1)

• The nonlinearity *F* is *degenerate elliptic*, i.e.

$$F(x, p, X, l_1) \le F(x, p, Y, l_2) \text{ if } X \ge Y, l_1 \ge l_2,$$
 (E)

• Fractional Laplacian of order $\beta \in (0,2)$

$$(-\Delta)^{\beta/2}u=\int_{\mathbb{R}^d}(u(x+z,t)-u(x,t)-Du(x,t)\cdot z1_B(z))\frac{dz}{|z|^{d+\beta}}$$

3 / 27

Partial Integro-Differential Equations. Lévy Processes

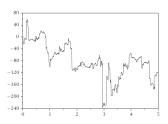


Figure: Stable Levy process. Jump discontinuities are represented by vertical lines.

The infinitezimal generator of a Lévy process

$$Lu(x) = \underbrace{b \cdot Du}_{drift} + \underbrace{\operatorname{tr}(AD^{2}u)}_{diffusion} + \underbrace{\int_{\mathbb{R}^{d}} \left(u(x + j(x, z)) - u(x) - Du \cdot j(x, z) 1_{B}(z) \right) \mu(dz)}_{jumps}.$$

Partial Integro-Differential Equations. Lévy Processes

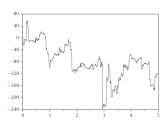


Figure: Stable Levy process. Jump discontinuities are represented by vertical lines.

The infinitezimal generator of a wider class of Markov processes of Courrège form

$$Lu(x) = \underbrace{c(x)u(x)}_{killing} + \underbrace{b(x) \cdot Du}_{drift} + \underbrace{\operatorname{tr}(A(x)D^{2}u)}_{diffusion} + \underbrace{\int_{\mathbb{R}^{d}} \left(u(x+z) - u(x) - Du \cdot z \ K(x,z) \right) \mu_{x}(dz)}_{L}.$$

Partial Integro-Differential Equations. Lévy Processes

Example (Drift diffusion PIDEs)

$$u_t + (-\Delta)^{\beta/2}u + b(x) \cdot Du = f(x)$$

Example (Mixed PIDEs)

$$u_t - \Delta_{x_1} u + (-\Delta_{x_2})^{\beta/2} u + b(x) \cdot Du = f(x)$$

with $1 < \beta < 2$.

Example (Coercive PIDEs)

$$u_t - tr(A(x)D^2u) - \mathcal{I}[u] + b(x)|Du|^m = f(x)$$

where

$$A(x) \ge a(x)I \ge 0, \ b(x) \ge b_0 > 0, m > 2.$$

LargeTime Behavior - periodic setting

Problem

Establish the long time behavior of periodic viscosity solutions:

$$u(x, t) = \lambda t + v(x) + o_t(1)$$
, as $t \to \infty$.

- Nonlocal: Imbert, Monneau, Rouy '07
- Parabolic PDEs: Barles, Mitake, Ishii '09, Barles and Souganidis '06, '01, Barles Da Lio '05, Dirr and Souganidis, '95, Roquejoffre '01
- Hamilton Jacobi equations: Barles, Roquejoffre '06, Barles Souganidis '00 Lions, Papanicolau, Varadhan, Ishii' 10, Namah and Roquejoffre '99, Fathi '98, Fathi and Mather '00, Arisawa '97

LargeTime Behavior - periodic setting

Theorem (Barles, Chasseigne, C., Imbert '13)

Under suitable assumptions, the solution of the initial value problem

$$u_t + F(x, D^2u, \mathcal{I}[u]) + H(x, Du) = f(x).$$
 (2)

with $u_0 \in C^{0,\alpha}$ and \mathbb{Z}^d periodic satisfies

$$u(x,t) - \lambda t \rightarrow v(x)$$
, as $t \infty$ uniformly in x ,

where v is the unique periodic solution (up to addition of constants) of the stationary ergodic problem

$$F(x, D^2v, \mathcal{I}[v]) + H(x, Dv) = f(x) - \lambda \text{ in } \mathbb{R}^d.$$
(3)

The study relies in general on two main ingredients:

- Strong Maximum Principle
- Regularity of viscosity solutions

The Ergodic Problem

To solve the ergodic problem

$$\lambda + F(x, D^2v, \mathcal{I}[v]) + H(x, Dv) = f(x) \text{ in } \mathbb{R}^d, \tag{4}$$

use the classical approximation

$$\delta v^{\delta} + F(x, D^{2}v^{\delta}, \mathcal{I}[v^{\delta}]) + H(x, Dv^{\delta}) = f(x).$$
 (5)

Perron's method and comparison principles: there exists a unique, bounded, periodic solution v^{δ} s.t. $||\delta v^{\delta}||_{\infty} \leq C$, hence $\delta v^{\delta}(0) \rightarrow \lambda$ as $\delta \rightarrow 0$.

Lemma

$$\tilde{v}^{\delta}(x) = v^{\delta}(x) - v^{\delta}(0)$$

is uniformly bounded and equicontinuous, hence $\tilde{v}^{\delta} \rightarrow v$ (along subsequences).

8 / 27

Proof.

Argue by contradiction: assume $||v^{\delta}||_{\infty}=:c_{\delta}\to\infty$ as $\delta\to 0$. Then the renormalized functions $w^{\delta}=\tilde{v}^{\delta}/c_{\delta}$ solve

$$\delta w^{\delta} + \frac{1}{c_{\delta}} F(x, c_{\delta} D^2 w^{\delta}, c_{\delta} \mathcal{I}[w^{\delta}]) + \frac{1}{c_{\delta}} H(x, c_{\delta} D w^{\delta}) = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}}.$$

Proof.

Argue by contradiction: assume $||v^{\delta}||_{\infty}=:c_{\delta}\to\infty$ as $\delta\to 0$. Then the renormalized functions $w^{\delta}=\tilde{v}^{\delta}/c_{\delta}$ solve

$$\delta w^{\delta} + F(x, D^{2}w^{\delta}, \mathcal{I}[w^{\delta}]) + \frac{1}{c_{\delta}}H(x, c_{\delta}Dw^{\delta}) = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}}.$$

Proof.

Argue by contradiction: assume $||v^{\delta}||_{\infty}=:c_{\delta}\to\infty$ as $\delta\to 0$. Then the renormalized functions $w^{\delta}=\tilde{v}^{\delta}/c_{\delta}$ solve

$$\delta w^{\delta} + F(x, D^{2}w^{\delta}, \mathcal{I}[w^{\delta}]) + \frac{1}{c_{\delta}}H(x, c_{\delta}Dw^{\delta}) = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}}.$$

Since $||w^{\delta}||=1$, solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \rightarrow w$$
, as $\delta \rightarrow 0$, uniformly in x.

Proof.

Argue by contradiction: assume $||v^{\delta}||_{\infty} =: c_{\delta} \to \infty$ as $\delta \to 0$. Then the renormalized functions $w^{\delta} = \tilde{v}^{\delta}/c_{\delta}$ solve

$$\delta w^{\delta} + F(x, D^{2}w^{\delta}, \mathcal{I}[w^{\delta}]) + \frac{1}{c_{\delta}}H(x, c_{\delta}Dw^{\delta}) = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}}.$$

Since $||w^{\delta}|| = 1$, solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \rightarrow w$$
, as $\delta \rightarrow 0$, uniformly in x.

The limit w is \mathbb{Z}^d periodic, $C^{0,\alpha}$, w(0) = 0, $||w||_{\infty} = 1$ and satisfies

$$F(x, D^2w, \mathcal{I}[w]) + \overline{H}(x, Dw) = 0.$$
(6)

Proof.

Argue by contradiction: assume $||v^{\delta}||_{\infty}=:c_{\delta}\to\infty$ as $\delta\to 0$. Then the renormalized functions $w^{\delta}=\tilde{v}^{\delta}/c_{\delta}$ solve

$$\delta w^{\delta} + F(x, D^{2}w^{\delta}, \mathcal{I}[w^{\delta}]) + \frac{1}{c_{\delta}}H(x, c_{\delta}Dw^{\delta}) = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}}.$$

Since $||w^{\delta}||=1$, solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \rightarrow w$$
, as $\delta \rightarrow 0$, uniformly in x.

The limit w is \mathbb{Z}^d periodic, $C^{0,\alpha}$, w(0)=0, $||w||_{\infty}=1$ and satisfies

$$F(x, D^2w, \mathcal{I}[w]) + \overline{H}(x, Dw) = 0.$$
 (6)

Provided the limiting equation satisfies Strong Maximum Principle, $w \equiv 0!$

9 / 27

Proof.

To fix ideas, let

$$H(x, p) = b(x)|p|^m \text{ for } m > 1.$$

The renormalized functions $w^\delta = \tilde{v}^\delta/c_\delta$ solve

$$\frac{1}{c_{\delta}^{m-1}}\delta w^{\delta} + \frac{1}{c_{\delta}^{m-1}}F(x,c_{\delta}D^{2}w^{\delta},c_{\delta}\mathcal{I}[w^{\delta}]) + b(x)|Dw^{\delta}|^{m} = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}^{m}}.$$

Proof.

To fix ideas, let

$$H(x, p) = b(x)|p|^m \text{ for } m > 1.$$

The renormalized functions $w^\delta = \tilde{v}^\delta/c_\delta$ solve

$$\frac{1}{c_{\delta}^{m-1}}\delta w^{\delta} + \frac{1}{c_{\delta}^{m-1}}F(x,c_{\delta}D^{2}w^{\delta},c_{\delta}\mathcal{I}[w^{\delta}]) + b(x)|Dw^{\delta}|^{m} = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}^{m}}.$$

Solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \to w$$
, as $\delta \to 0$, uniformly in x.

Proof.

To fix ideas, let

$$H(x, p) = b(x)|p|^m \text{ for } m > 1.$$

The renormalized functions $w^\delta = \tilde{v}^\delta/c_\delta$ solve

$$\frac{1}{c_{\delta}^{m-1}}\delta w^{\delta} + \frac{1}{c_{\delta}^{m-1}}F(x,c_{\delta}D^{2}w^{\delta},c_{\delta}\mathcal{I}[w^{\delta}]) + b(x)|Dw^{\delta}|^{m} = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}^{m}}.$$

Solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \to w$$
, as $\delta \to 0$, uniformly in x.

Proof.

To fix ideas, let

$$H(x, p) = b(x)|p|^m$$
 for $m > 1$.

The renormalized functions $w^\delta = \tilde{v}^\delta/c_\delta$ solve

$$\frac{1}{c_{\delta}^{m-1}}\delta w^{\delta} + \frac{1}{c_{\delta}^{m-1}}F(x,c_{\delta}D^{2}w^{\delta},c_{\delta}\mathcal{I}[w^{\delta}]) + b(x)|Dw^{\delta}|^{m} = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}^{m}}.$$

Solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \rightarrow w$$
, as $\delta \rightarrow 0$, uniformly in x.

The limit w is \mathbb{Z}^d periodic, $C^{0,\alpha}$, w(0)=0, $||w||_{\infty}=1$ and satisfies

$$b(x)|Dw|^m=0.$$

Proof.

To fix ideas, let

$$H(x, p) = b(x)|p|^m$$
 for $m > 1$.

The renormalized functions $w^{\delta} = \tilde{v}^{\delta}/c_{\delta}$ solve

$$\frac{1}{c_{\delta}^{m-1}}\delta w^{\delta} + \frac{1}{c_{\delta}^{m-1}}F(x,c_{\delta}D^{2}w^{\delta},c_{\delta}\mathcal{I}[w^{\delta}]) + b(x)|Dw^{\delta}|^{m} = \frac{f(x) - \delta v_{\delta}(0)}{c_{\delta}^{m}}.$$

Solutions are uniformly $C^{0,\alpha}$ and up to a subsequence

$$w^{\delta} \to w$$
, as $\delta \to 0$, uniformly in x.

The limit w is \mathbb{Z}^d periodic, $C^{0,\alpha}$, w(0)=0, $||w||_{\infty}=1$ and satisfies

$$b(x)|Dw|^m=0.$$

Provided $b(x) \ge b_0 > 0$ we get $Dw \equiv 0$, hence $w \equiv 0$!

The Convergence

Proof.

Both u(x,t) and $v(x) + \lambda t$ are solutions of (2). By comparison

$$m(t) := \sup_{x} (u(x,t) - \lambda t - v(x)) \searrow \bar{m}, \text{ as } \to \infty.$$

Take then the \mathbb{Z}^d periodic functions $w(x,t) = u(x,t) - \lambda t$ and show $w(x,t+t_n) \to \bar{w}(x,t)$ as $t_n \to \infty$, where \bar{w} solves

$$\begin{cases}
\bar{w}_t + F(x, D^2 \bar{w}, \mathcal{I}[\bar{w}]) + H(x, D\bar{w}) = f(x) - \lambda, & \text{in } \mathbb{R}^d \times (0, +\infty) \\
\bar{w}(x, 0) = v(x), & \text{in } \mathbb{R}^d
\end{cases}$$
(7)

Passing to the limit in $m(t+t_n)$ as $n\to\infty$ $\bar{m}=\sup_x(\bar{w}(x,t)-v(x))$ By the Strong Maximum Principle for the evolution equation above we get

$$\bar{w}(x,t) = v(x) + \bar{m}$$
.

The conclusion follows.

Strong Maximum Principle for PIDEs

Problem

Establish Strong Maximum Principle for Dirichlet boundary value problems

$$\begin{cases} u_t + F(x, t, Du, D^2u, \mathcal{J}[x, u]) = 0, & \text{in } \Omega \times (0, T) \\ u = \varphi & \text{on } \Omega^c \times [0, T]. \end{cases}$$
 (8)

Strong Maximum Principle and (Strong) Comparison Results

- nonlocal operators: Coville '08;
- elliptic second order equations:
 Bardi-Da Lio '01, '03, Da Lio '04, Nirenberg '53, Hopf '20s;
- * comparison results and Jensen-Ishii's lemma: Jakobsen-Karlsen '06, Barles-Imbert '08, Jensen '88, Ishii '89, Crandall, Ishii, Lions '90s

Strong Maximum Principle

Theorem (C. '11)

Anu $u \in USC(\mathbb{R}^d \times [0, T])$ viscosity subsolution of (8) that attains a maximum at $(x_0, t_0) \in \Omega \times (0, T)$ is constant in $\overline{\Omega} \times [0, t_0]$.

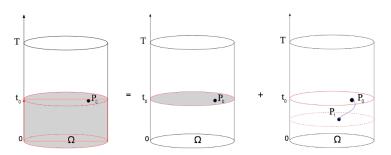


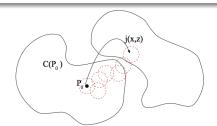
Figure: SMaxP = horizontal and vertical propagation of maxima.

Horizontal Propagation - Translations of Measure Supports

Theorem (C. '11)

If u attains a global maximum at $(x_0, t_0) \in \mathbb{R}^d \times (0, T)$, then u is constant on $\bigcup_{n \geq 0} A_n \times \{t_0\}$ with

$$A_0 = \{x_0\}, \ A_{n+1} = \bigcup_{x \in A_n} (x + supp(\mu_x)).$$
 (9)



$$\mu(dz) = \frac{dz}{|z|^{d+\beta}}.$$

Horizontal Propagation - Translations of Measure Supports

Example (Measures supported in the unit ball)

$$\mu(dz)=1_B(z)\frac{dz}{|z|^{d+\beta}}.$$

Example (Measures charging two axis meeting at the origin)

$$\mu_{x}(dz) = 1_{\{z_{1} = \pm \alpha z_{2}\}}(z)\nu_{x}(dz),$$

Example (Pittfall of fractional diffusion on half space)

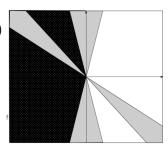
$$\mu(dz)=1_{\{z_1\geq 0\}}(z)\frac{dz}{|z|^{d+\beta}}.$$

Horizontal Propagation - Nondegeneracy of the Measure

For any $x \in \Omega$ there exist $\beta \in (1,2), \eta \in (0,1)$ and a constant $C_{\mu}(\eta) > 0$ s.t. for 0 < |p| < R

$$\int_{\mathcal{C}_{\eta,\gamma}(oldsymbol{p})} |z|^2 \mu_{\scriptscriptstyle X}(extit{d} z) \geq \mathcal{C}_{\mu}(\eta) \gamma^{eta-2}, orall \gamma \geq 1$$

$$C_{n,\gamma}(p) = \{z; (1-\eta)|z||p| \le |p \cdot z| \le 1/\gamma\}$$



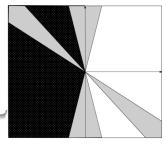
Theorem (C. '11)

Under suitable nondegeneracy and scaling assumptions, if a usc viscosity subsolution u attains a maximum at $P_0 = (x_0, t_0)$, then u is constant in the horizontal component of the domain, passing through point P_0 .

Horizontal Propagation - Nondegeneracy of the Measure

Example (Overcome fractional diffusion on half space)

$$\mu(dz) = \mathbf{1}_{\{z_1 \geq 0\}}(z) \frac{dz}{|z|^{d+\beta}}, \beta > 1.$$



Theorem (C. '11)

Under suitable nondegeneracy and scaling assumptions, if a usc viscosity subsolution u attains a maximum at $P_0 = (x_0, t_0)$, then u is constant in the horizontal component of the domain, passing through point P_0 .

Strong Maximum Principle

Example (SMaxP driven by differential terms)

$$u_t - \operatorname{tr}(\sigma(x)\sigma^*(x)D^2u) - c(x)\mathcal{I}[x, u] = f(x), \text{ in } \Omega \times (0, T)$$

where σ is a positive definite matrix and $c(x) \geq 0$.

Example (SMaxP driven by the nonlocal term)

$$u_t + b(x) \cdot Du + (-\Delta_x u)^{\beta/2} = f(x), \text{ in } \Omega \times (0, T)$$

where $b(\cdot)$ is a bounded vector field and the fractional exponent $\beta > 1$.

Example (SMaxP for mixed differential-nonlocal terms)

$$u_t - a_1(x)\Delta_{x_1}u + a_2(x)(-\Delta_{x_2}u)^{\beta/2} = f(x)$$
, in $\Omega \times (0, T)$

where $a_1(x), a_2(x) \ge a_0 > 0$ and the fractional exponent $\beta > 1$.

Strong Comparison Principle

Theorem (C.)

If u and v are an usc viscosity subsolution, lsc viscosity supersolution s.t. u - v attains a maximum at P_0 , then u - v is constant in $S(P_0)$.

Example (Mixed PIDEs)

$$u_t - a_1(x)\Delta_{x_1}u + a_2(x)(-\Delta_{x_2})^{\beta/2}u = f(x)$$

if the fractional exponent $\beta > 1$ and

$$a_1(x), a_2(x) \ge a_0 > 0.$$

Example (Coercive PIDEs)

$$u_t - \mathcal{I}[u] + \frac{b(x)|Du|^m}{} = f(x)$$

if u is Lipschitz continuous, $b(x) \ge b_0 > 0$ and m > 2.

Hölder and Lipschitz Regularity

Problem

Viscosity solutions of PIDEs are $C^{0,\alpha}/\text{Lipschitz}$ continuous in space (dep. on β)

$$||u||_{C^{0,\alpha}}\leq C||u||_{\infty}.$$

Main approaches for proving the Hölder regularity of *viscosity solutions* of local/nonlocal equations

- Harnack estimates, for uniformly elliptic equations: Guillen Schwab '11,
 Silvestre Imbert '14, Silvestre Cardaliaguet '12, Silvestre Vicol '12, Silvestre '06,'11, Caffarelli, Silvestre '09, '11 Caffarelli Cabré '95
 Regularity and ABP estimates for a larger class of PIDEs left open!
- direct viscosity methods such as Ishii-Lions's '90, for degenerate elliptic equations: Barles, Chasseigne and Imbert '11, Cardaliaguet-Rainer '10 Lipschitz or further regularity, e.g. $C^{1,\alpha}$ left open!

Model equations for Hölder and Lipschitz regularity

Advection fractional diffusion

$$u_t + (-\Delta u)^{\beta/2} + b(x) \cdot Du = f$$

- Subcritical case $\beta > 1$: for $b \in L^{\infty}$ the solution is Lipschitz continuous.
- Critical case $\beta = 1$: for $b \in C^{\tau}$, $\tau > 0$ the solution is C^{β} .
- Supercritical case $\beta < 1$: for $b \in C^{1-\beta+\tau}$, the solution is C^{β} .

Model equations for Hölder and Lipschitz regularity

Fractional difussion with superlinear gradient growth

$$u_t - tr(A(x)D^2u) + a_2(x)(-\Delta)^{\beta/2}u + b(x)|Du|^k = f$$

with nondegenerate diffusion $A(x) \ge a_1(x)I$, with

$$a_1(x) + a_2(x) \ge a_0 > 0.$$

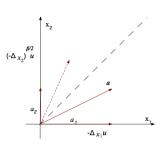
- When $\beta > 1$: for $b \in C^{0,\tau}$ and $k \le \tau + \beta$ the solution is Lipschitz.
- When $\beta > 1$: for $b \in L^{\infty}$ and $k \leq \beta$ the solution is Lipschitz continuous.
- When $\beta < 1$: for $b \in C^{1-\beta+\tau}$, and $k < \beta$ the solution is C^{β} .

Horizontal Propagation - Nondegeneracy of the Measure

Mixed ellipticity

$$-a_1(x_1)\Delta_{x_1}u + a_2(x_2)(-\Delta_{x_2}u)^{\beta/2} = f(x_1, x_2)$$

with $a_i(x) \ge a_0 > 0$.



Problem

Solutions are Lipschitz continuous in the x_1 -variable and Hölder, resp. Lipschitz continuous in the x_2 variable if $\beta \le 1$, resp. $\beta > 1$.

Partial Regularity

We give both *Hölder and Lipschitz regularity results* of viscosity solutions for a general class of mixed integro-differential equations of the type

$$-a_1(x_1)\Delta_{x_1}u -a_2(x_2)\mathcal{I}_{x_2}[x,u] - \mathcal{I}[x,u] +b_1(x_1)|D_{x_1}u_1|^{k_1}+b_2(x_2)|D_{x_2}u|^{k_2}+|Du|^n+cu=f(x).$$

Theorem (Barles, Chasseigne, C., Imbert '12)

Any periodic continuous viscosity solution u

- (a) is Lipschitz in the x_2 variable, if $\beta > 1$ and $k_2 \le \beta$, $k_1 = 1$, $n \ge 0$;
- (b) is $C^{0,\alpha}$ with $\alpha < \frac{\beta k_2}{1 k_2}$, if $\beta \le 1$ and $k_2 < \beta$, $k_1 = 1$, $n \ge 0$.
- (c) If $b_2 \in C^{0,\tau}(\mathbb{R}^{d_2})$, then we can deal wtih growth up to $k_2 \leq \beta + \tau$.

The Lipschitz/Hölder constant depends on $||u||_{\infty}$, on the dimension d, the constants associated to the Lévy measures and on the functions a_2 , b_2 and f.

Classical argument for Hölder continuity: show that

$$\max_{x,y} (u(x) - u(y) - \phi(|x - y|)) < 0.$$

where for Hölder regularity the control function is given by

$$\phi(|x-y|) = L|x-y|^{\alpha}$$

whereas for Lipschitz by

Classical argument for Hölder continuity: show that

$$\max_{x,y} (u(x) - u(y) - \phi(|x - y|)) < 0.$$

where for Hölder regularity the control function is given by

$$\phi(|x-y|) = L|x-y|^{\alpha}$$

whereas for Lipschitz by

$$\phi(|x-y|) = L|x-y|$$

Classical argument for Hölder continuity: show that

$$\max_{x,y} (u(x) - u(y) - \phi(|x - y|)) < 0.$$

where for Hölder regularity the control function is given by

$$\phi(|x-y|) = L|x-y|^{\alpha}$$

whereas for Lipschitz by

$$\phi(|x - y|) = L|x - y| - \rho|x - y|^{1+\alpha}.$$

Classical argument for Hölder continuity: show that

$$\max_{x,y} (u(x) - u(y) - \phi(|x - y|)) < 0.$$

where for Hölder regularity the control function is given by

$$\phi(|x-y|) = L|x-y|^{\alpha}$$

whereas for Lipschitz by

$$\phi(|x - y|) = L|x - y| - \rho|x - y|^{1+\alpha}.$$

For partial regularity, use classical regularity arguments in one set of variables, and uniqueness type arguments in the other variables:

$$\psi_{\varepsilon}(x,y) = u(x_1,x_2) - u(y_1,y_2) - \phi(x_1-y_1)$$

Classical argument for Hölder continuity: show that

$$\max_{x,y} \left(u(x) - u(y) - \phi(|x-y|) \right) < 0.$$

where for Hölder regularity the control function is given by

$$\phi(|x-y|) = L|x-y|^{\alpha}$$

whereas for Lipschitz by

$$\phi(|x-y|) = L|x-y| - \rho|x-y|^{1+\alpha}.$$

For partial regularity, use classical regularity arguments in one set of variables, and uniqueness type arguments in the other variables:

$$\psi_{\varepsilon}(x,y) = u(x_1,x_2) - u(y_1,y_2) - \phi(x_1-y_1) - \frac{|x_2-y_2|^2}{\varepsilon^2}$$

Global regularity

A priori estimates. The regularity results can be extended to superlinear cases, by a gradient cut-off argument.

$$\begin{aligned} &-a_1(x_1)\Delta_{x_1}u & -a_2(x_2)\mathcal{I}_{x_2}[x,u] - \mathcal{I}[x,u] \\ &+b_1(x_1)|D_{x_1}u_1| & +b_2(x_2)|D_{x_2}u| & +|Du|^n + cu = f(x). \end{aligned}$$

Theorem (Barles, Chasseigne, C., Imbert '12)

Any periodic continuous viscosity solution u

- (a) is Lipschitz continuous, if $\beta > 1$ and $k_2 = 1$, $k_1 = 1$, n > 0;
- (b) is $C^{0,\alpha}$ continuous with $\alpha < \frac{\beta_2 k_2}{1 k_2}$, if $\beta \le 1$ and $k_2 = 1$, $k_1 = 1$, $n \ge 0$.

Global regularity

A priori estimates. The regularity results can be extended to superlinear cases, by a gradient cut-off argument.

$$-a_1(x_1)\Delta_{x_1}u - a_2(x_2)\mathcal{I}_{x_2}[x,u] - \mathcal{I}[x,u] +b_1(x_1)|D_{x_1}u_1|^{k_1} + b_2(x_2)|D_{x_2}u|^{k_2} + |Du|^n + cu = f(x).$$

Theorem (Barles, Chasseigne, C., Imbert '12)

Any periodic continuous viscosity solution u

- (a) is Lipschitz continuous, if $\beta > 1$ and $k_2 \le \beta_i$, $k_1 \le 2$, $n \ge 0$;
- (b) is $C^{0,\alpha}$ continuous with $\alpha < \frac{\beta_2 k_2}{1 k_2}$, if $\beta \le 1$ and $k_2 < \beta_i$, $k_1 \le 2$, $n \ge 0$.

Extensions of the regularity results

- the non-periodic setting
- parabolic case

$$u_t + F_0(..., \mathcal{I}[x, u]) + F_1(..., \mathcal{I}_{x_1}[x, u]) + F_2(..., \mathcal{J}_{x_2}[x, u]) = f(x)$$

• fully nonlinear Bellman - Isaacs equations

$$\sup_{\gamma\in\Gamma}\inf_{\delta\in\Delta}\left(F_0^{\gamma,\delta}(...,\mathcal{J}^{\gamma,\delta})+F_1^{\gamma,\delta}(...,\mathcal{J}_{x_1}^{\gamma,\delta})+F_2^{\gamma,\delta}(...,\mathcal{J}_{x_2}^{\gamma,\delta})-f^{\gamma,\delta}(x)\right)=0$$

multiple nonlinearities.

Hölder and Lipschitz Regularity

Thank you for your attention!