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1. Introduction 
1.1 Models (for growth of a crystal surface) 

Two-dimensional nucleation: A flat crystal surface 
grows by adatoms over the surface. How should one 
model this phenomenon to measure the growth 
rate? 
 

There are several models. A typical one is “Birth and 
Spread Model” (cf. M. Ohara – R. C. Reid (1973))  
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Birth and Spread Model 

1. Birth 
Adatoms touch to the crystal surface on a set 𝐸.  
The set 𝐸 is a set of nucleation centers.  
The height is assumed to be ℎ > 0. 

birth 

𝑅2 
ℎ 

𝐸 
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2. Spread / propagation 
Each layer (step) moves horizontally with 
horizontal normal speed:  

𝑉 = 𝑣∞  𝜌𝑐𝜅 + 1 . 
Here 𝜅 : the mean curvature (sum of principal curvature) 
 𝑣∞ > 0 : step velocity 
 𝜌𝑐 > 0 : critical radius 

spread 

𝑅2 
ℎ 

𝑉 

𝐸 

Birth and Spread Model (continued) 
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3. Repeat the Step 1 (Forming the second 
layer) 

4. Repeat the Step 2 
and repeat 3 and 4 successively. 

Step 3 

𝑅2 
𝐸 

Birth and Spread Model (continued) 
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Birth and Spread Model (continued) 
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Step 5 

𝑅2 
𝐸 

Step 4 

𝑅2 
𝐸 

𝑉 
𝑉 

𝑉 



Derivation of PDE model 
Let 𝑤 = 𝑤(𝑥, 𝑡) be the height function at the place 𝑥 ∈ 𝑅2 

and the time 𝑡 > 0. 
1. Birth (with speed 𝒄 > 𝟎) 

𝑢 𝑥, 𝑡 = 𝑐1𝐸𝑡,    1𝐸 𝑥 = � 1, 𝑥 ∈ 𝐸
 0, 𝑥 ∉ 𝐸 

or   𝑢𝑡 = 𝑐 1𝐸  
2. Spread 

𝑢𝑡 = 𝑣∞ 𝜌𝑐 div
𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷  

Repeating these processes alternatively with the time grid 𝜏 
and sending 𝜏 → 0 to get the equation 

𝑤𝑡 − 𝑣∞ 𝜌𝑐 div
𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷 = 𝑐1𝐸  

( Trotter-Kato product formula ) 
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Problem 

Consider 

 𝑤𝑡 − 𝑣∞ 𝜌𝑐 div
𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷 = 𝑐1𝐸

 𝑤�
𝑡=0

= 0.                                                            
 

What is the large time behavior of 𝑤? For example, 
investigate the asymptotic speed (growth rate) 

lim
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

= ? 

( The value may not be 𝑐. ) 
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2. The case of no curvature and spherical 
symmetric case 

2.1 The case 𝝆𝒄 = 𝟎 

Equation becomes 

�
 𝑤𝑡 − 𝑣∞ 𝐷𝐷 = 𝑐1𝐸   ( 𝐸 : bounded closed set ) 

 𝑤�
𝑡=0

= 0                                                                      

The unique “envelope” solution is 

𝑤 𝑥, 𝑡 = 𝑐 𝑡 − 𝑣∞ dist 𝑥,𝐸 +  
so that 𝑤 𝑡⁄ → 𝑐  as  𝑡 → ∞. The set 𝐸 can be a point or a 
discrete set, so we need a notion of an envelope solution (Y. G. 
– N. Hamamuki (2013)) 
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Asymptotic speed in the case 𝝆𝒄 = 𝟎 

 𝑤𝑡 − 𝑣∞ 𝐷𝐷 = �𝑐𝑖

𝑚

𝑖=1

1 𝑎𝑖 ,　𝑐𝑖 > 0

 𝑤�
𝑡=0

= 0                                                  
 

The unique envelope solution is given 

𝑤 𝑥, 𝑡 = max
1≤𝑖≤𝑚

𝑐𝑖 𝑡 − 𝑣∞ 𝑥 − 𝑎𝑖 + 

( cf. T. P. Schulze – R. Kohn (1999) ) 

The problem is coercive so general growth rate can be obtained. 
(N. Hamamuki (2014)) 
Large-time asymptotics for non-coercive Hamiltonians (e.g. Y. G. – 
Q. Liu – H. Mitake (2012), (2014). E. Yokoyama – Y. G. – P. Rybka 
(2008)) 
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From now on, we assume 𝜌𝑐 = 1,𝑣∞ = 1.  
Consider the level-set flow equation of the eikonal-
curvature flow 𝑉 = 𝜅 + 1 with source term 𝑓 : 

(P)  
𝑤𝑡 − div

𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷 = 𝑓 𝑥   in  𝑅𝑛 × 0,∞ ,

𝑤�
𝑡=0

= 𝑤0                                                  in  𝑅𝑛.                  
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2.2 Spherical symmetric case 



Here 𝑓 is bounded and 𝑓 ≥ 0, supp 𝑓 is compact, 𝑤0 is 
continuous, supp𝑤0 is compact. 

 

 

• Even if 𝑓 is discontinuous, there exists a global-in-time 
viscosity solution, which may not be unique (Y. G. – Mitake 
– Tran) 

• Weak comparison principle holds.  

13 

Assumptions on 𝒇 and 𝒘𝟎 

Basic properties 



A non-coercive equation : 

𝑤𝑡 − 1 −
𝑛 − 1
𝑟

𝑤𝑟 = 𝑐1𝐵 0,𝑅0 . 

Assume that 𝐸 = 𝐵(0,𝑅0)  a closed ball of radius 𝑅0 
centered at zero. Let 𝑤 be the maximum solution of (P) 
with 𝑓 = 𝑐1𝐸 ,𝑤0 = 0. The solution 𝑤 can be obtained by 
an explicit calculation. 

• 𝑅0 < 𝑛 − 1 ⇒ the growth is completed in finite time 
• 𝑅0 > 𝑛 − 1 ⇒ the growth rate equals 𝑐 
• 𝑅0 = 𝑛 − 1 ⇒ 𝑤 𝑥, 𝑡 = 𝑡𝑡1𝐵(0,𝑅0) 

It grows with speed 𝑐 in 𝐵(0,𝑅0) but never grows 
outside 𝐵(0,𝑅0) 

14 

Spherical symmetric case 



Note that even if 𝐸 = 𝜕𝜕 0,𝑅0  with 𝑅0 > 𝑛 − 1, we get 𝑤(𝑥,𝑡)
𝑡

→ 𝑐. 
15 

Spherical symmetric case 
Theorem 2.1.  (i) If 𝑅0 < 𝑛 − 1, then 

𝑤 𝑥, 𝑡 = min(𝑐𝑐,𝜑 𝑟 ) 
𝜑: stationary solution 

(ii) If 𝑅0 > 𝑛 − 1, then 

lim
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

= 𝑐    ( locally uniformly ) 

( There is an explicit formula for 𝑤 ) 

(iii) If 𝑅0 = 𝑛 − 1, 𝑤 𝑥, 𝑡 = 𝑡 𝑐1𝐵(0,𝑅0) 

Here 𝑤  is the maximal viscosity 
solution. 

graph of 𝜑 

𝑅𝑛 
𝑐𝑐 

−(𝑛 − 1) 𝑛 − 1 



3. Existence of asymptotics speed for a 
Lipschitz source term (work in progress) 
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Consider 

(P)  
𝑤𝑡 − div

𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷 = 𝑓 𝑥   in  𝑅𝑛 × 0,∞

𝑤�
𝑡=0

= 𝑤0                                                   in  𝑅𝑛                 
 

𝑓 : bounded, 𝑓 ≢ 0, supp 𝑓 : compact 
𝑤0 : continuous, supp𝑤0 : compact 
( There is a unique viscosity solution if 𝑓 is Lipschitz. ) 

Theorem 3.1.  Assume that 𝑓 is Lipschitz. Let 𝑤 be the 
viscosity solution of (P). Then lim

𝑡→∞
𝑤(𝑥, 𝑡) 𝑡⁄ = 𝑎 exists and 

the convergence is locally uniform. 
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Let 𝜙(𝑡) be the maximum value of 𝑤 at time 𝑡, i.e., 

𝜙 𝑡 ≔ max
𝑥∈𝑅𝑛

𝑤(𝑥, 𝑡) 
 
 
 
 

Proof. Set 𝑣 𝑥, 𝑡 ≔ 𝑤 𝑥, 𝑡 + 𝑠 − 𝜙(𝑠) so that 𝑣 𝑥, 0 ≤ 0. 
By the comparison principle, 𝑣 𝑥, 𝑡 ≤ 𝑤(𝑥, 𝑡), which implies 

𝑤 𝑥, 𝑡 + 𝑠 ≤ 𝑤 𝑥, 𝑡 + 𝜙(𝑠) 

for all 𝑥 ∈ 𝑅𝑛. 

Theorem 3.2 (Subadditivity of 𝝓).  𝜙 𝑡 + 𝑠 ≤ 𝜙 𝑡 + 𝜙 𝑠  
𝑡, 𝑠 > 0 

What is the growth rate 𝒂? 
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Proof. Fekete’s lemma on subadditivity says that 𝜙(𝑡)/𝑡 is 
nonincreasing. Thus lim

𝑡→∞
𝜙(𝑡)/𝑡 exists. 

The growth rate in Theorem 3.1 must be inf𝜙(𝑡)/𝑡 . 

Lemma 3.3. 

𝑎 = lim
𝑡→∞

𝜙(𝑡)
𝑡

= inf
𝑡>0

𝜙(𝑡)
𝑡

 

What is the growth rate 𝒂? (continued) 



19 

Proof of Theorem 3.1. For any fixed 𝑅 > 0 we have, by Lemma 3.4,  

𝑤 𝑥, 𝑡 − 𝜙(𝑡) = 𝑤 𝑥, 𝑡 − max
𝑦∈ −𝑑,𝑑 𝑛

𝑤(𝑦, 𝑡) ≤ L 𝑅 + 𝑑  

where 𝑑 is taken so that supp 𝑓 , supp𝑤0 ⊂ −𝑑,𝑑 𝑛. Thus 

lim
𝑡→∞

sup
𝑥 <𝑅

𝑤(𝑥, 𝑡) − 𝜙(𝑡)
𝑡

= 0, 

which yields Theorem 3.1. 
 

Lemma 3.4 (Lipschitz bound).  There exists 𝐶 > 0 depending on 
𝑓 and 𝑤0 such that 

𝑤𝑡 𝐿∞(𝑅𝑛× 0,∞ ) + 𝐷𝐷 𝐿∞(𝑅𝑛× 0,∞ ) ≤ 𝐶 

Idea of the proof of Theorem 3.1 



Bernstein’s argument to get a Lipschitz 
bound (formal proof of Lemma 3.4) 
We recall that our equation can be written as 

𝑤𝑡 −�𝑎𝑖𝑖 𝐷𝐷
𝑖,𝑗

𝑤𝑥𝑖𝑥𝑗 − 𝐷𝐷 − 𝑓 = 0 

with 𝑎𝑖𝑖 𝑝 = 𝛿𝑖𝑖 − 𝑝𝑖𝑝𝑗/ 𝑝 2 . We set 𝑈 = 𝐷𝐷 2/2  and 
differentiate in 𝑥𝑘 the above equation and multiply 𝑤𝑥𝑘  to get 

2𝑈𝑡 − � 𝑎𝑖𝑖 𝑈𝑥𝑖𝑥𝑗 − 𝑤𝑥𝑖𝑥𝑘𝑤𝑥𝑗𝑥𝑘
𝑖,𝑗,𝑘,ℓ

− 𝑓𝑥𝑘𝑤𝑥𝑘

− 𝑎𝑖𝑖 𝑝ℓ
𝑤𝑥𝑖𝑥𝑗 +

2𝑤𝑥ℓ
𝐷𝐷

𝑈𝑥ℓ = 0 
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Take max point 𝑥0, 𝑡0 ∈ 𝑅𝑛 × (0,𝑇] of 𝑈, i.e., 

𝑈 𝑥0, 𝑡0 = max
𝑅𝑛×[0,𝑇]

𝑈 . 

(We may assume that 𝑡0 > 0 .) At this point 𝑈𝑡 ≤ 0 , 
𝐷𝐷 = 0, 𝐷2𝑈 ≤ 0. Thus 

�𝑎𝑖𝑖
𝑖,𝑗,𝑘

𝑤𝑥𝑖𝑥ℎ𝑤𝑥𝑗𝑥𝑘 − 𝑓𝑥𝑘𝑤𝑥𝑘 ≤ 0.          (∗) 

Note that 0 ≤ 𝐴 ≤ 𝐼  for 𝐴 = (𝑎𝑖𝑖). 
A linear algebra inequality tr𝐴𝐴 2 ≤ tr𝐴 tr𝐴𝐴2 for 

𝐴 ≥ 0 implies 

�𝑎𝑖𝑖 𝑤𝑥𝑖𝑥𝑗

2

≤ 𝑛�𝑎𝑖𝑖 𝑤𝑥𝑖𝑥𝑘𝑤𝑥𝑗𝑥𝑘 . 
21 

Formal proof continued 1 



Note that 

�𝑎𝑖𝑖 𝑤𝑥𝑖𝑥𝑗

2

= 𝑤𝑡 − 𝐷𝐷 − 𝑓 2 ≥
1
2
𝐷𝐷 2 − 𝑀0∃  

provided that 𝑤𝑡 ≤ 𝑀1 (since 𝑓 is Lipschitz). 

Thus (*) implies 
1

2𝑛
𝐷𝐷 2 − 𝐷𝐷 ⋅ 𝐷𝐷 ≤ 𝑀2   at   𝑥0, 𝑡0 . 

This implies a bound for 𝐷𝐷  (or 𝑈). (The bound for 
𝑤𝑡 ≤ 𝑀1 is easier.) 

Actual proof needs approximation of the equation so that 
the equation is parabolic e.g. 𝐷𝐷  is approximated by 
𝐷𝐷 2 + 𝜀2 1 2⁄ .  

22 

Formal proof continued 2 



4. Estimate for asymptotic speed  
(Y. G. – H. Mitake – H. Tran, preprint) 
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We have studied this problem when 𝐸 is a ball. In 
this case 

𝑤(𝑥, 𝑡)
𝑡

→ 0   or   
𝑤(𝑥, 𝑡)

𝑡
→ 𝑐. 

Are there any intermediate situation? 

Problem.  If 𝑓(𝑥) = 𝑐1𝐸, in what 𝐸 

lim sup
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

< 𝑐   and　 lim inf
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

> 0? 



4.1 In the case of square 

Assume that 𝐸 = (𝑥1, 𝑥2) 𝑥𝑖 ≤ 𝑑, 𝑖 = 1, 𝑧 . Let 𝑤 be the 
maximal solution of 

𝑤𝑡 − div
𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷 = 𝑐1𝐸 , 

𝑤�
𝑡=0

= 0. 
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𝑑 < 1 2⁄  

1 0 

1 2⁄ < 𝑑 < 1 

1 0 

𝑑 > 1 

1 0 
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Growth speed seriously depends on the shape of 𝐸. 

Theorem 4.1 (Y. G. – H. Mitake – H. Tran, preprint).  
Assume that 1 2⁄ < 𝑑 < 1. Then there exists 𝛼 and 𝛽 
such that 0 < 𝛼 < 𝛽 < 𝑐 at 

𝛼 ≤ lim inf
𝑡→∞

𝑤 𝑥, 𝑡
𝑡

≤ lim sup
𝑡→∞

𝑤 𝑥, 𝑡
𝑡

≤ 𝛽 

locally uniformly  for 𝑥 ∈ 𝑅2. 

Intermediate situation 



4.2 Motion of the top – flow with obstacle 

We consider 

𝑤𝑡 − div
𝐷𝐷
𝐷𝐷

+ 1 𝐷𝐷 = 𝑐1𝐸 ,　𝑤�
𝑡=0

= 0 

for a general compact set 𝐸 in 𝑅𝑛. 

By comparison, 𝑤∗ 𝑥, 𝑡 ≤ 𝑐𝑐 in 𝑅𝑛 × 0,∞ . 

Notation: 

𝐴max 𝑡 = 𝑥 ∈ 𝑅𝑛 𝑤∗ 𝑥, 𝑡 = 𝑐𝑐 . 
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Actually, ℎ is a subsolution of the obstacle problem 

max ℎ𝑡 − div
𝐷𝐷
𝐷ℎ

+ 1 𝐷𝐷 ,ℎ − 1𝐸 = 0  in  𝑅𝑛 × (0,∞) 

Curvature flow with an obstacle: G. Mercier…… 

Lemma 4.2.  The set 𝐴max 𝑡  is a set theoretic solution of 
𝑉 = 𝜅 + 1  (i.e., ℎ 𝑥, 𝑡 = 1𝐴max 𝑡 (𝑥)  is a viscosity 
subsolution of 

(L)                      ℎ𝑡 − div
𝐷ℎ
𝐷ℎ

+ 1 𝐷ℎ = 0. 

Moreover, 𝐴max 𝑡 ⊂ 𝐸. 

Curvature flow with obstacle 



Note that 
𝑤𝑐 𝑥, 𝑡 ≔ 𝑤 𝑥, 𝑡 − 𝑐𝑐 

is a viscosity subsolution of (L) and 𝑤𝑐 ≤ 0. Moreover, 
𝐴max 𝑡 = 𝑥 ∈ 𝑅𝑛 𝑤𝑐∗ 𝑥, 𝑡 = 0 . Thus 𝐴max  is a set 
theoretic subsolution (cf. Y. G., Surface Evolution Equations, 
2006). 

Proof for 𝑨𝒎𝒎𝒎 ⊂ 𝑬.  If not, 𝑥0∃ ∈ 𝐴max 𝑡0 ∩ 𝐸𝑐 with 
some 𝑡0 > 0. Then 𝜑 𝑥, 𝑡 = 𝑐𝑐 is a test function of 𝑤∗ 
from above. This is a contradiction 

𝑐 = 𝜑𝑡 − div
𝐷𝜑
𝐷𝐷

+ 1 𝐷𝐷 �
𝑥0,𝑡0

≤ 𝑐1𝐸(𝑥0) = 0. 
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Idea of proof 



4.3 Upper estimate 

Proof.  Since 𝐴max 𝑡0 = 𝜙, we have 

max
𝑥

𝑤(𝑥, 𝑡0) < 𝑐𝑡0. 

We set  

𝑏 = max
𝑥

𝑤(𝑥, 𝑡0)
𝑡0

 

to get the desired result. 
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Lemma 4.3.  Assume that a flow 𝑉 = 𝜅 + 1 with obstacle 
𝐸 starting from 𝐸 vanishes at 𝑡 = 𝑡0. Then there exists 
𝑏 ∈ (0, 𝑐) such that max

𝑥
𝑤(𝑥, 𝑡0) ≤ 𝑏𝑡0. 
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Global upper estimate 
Theorem 4.4.  Under the assumption of Lemma 4.3 
with 𝑡0. There exists 𝑏 ∈ (0, 𝑐) such that 

𝑤 𝑥, 𝑡 ≤ 𝑏𝑏 + 𝑐 − 𝑏 𝑡0,　 𝑥, 𝑡 ∈ 𝑅𝑛 × 0,∞ . 

In particular, 

lim sup
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

≤ 𝑏. 
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Since 
max
𝑥

𝑤(𝑥, 𝑡0) ≤ 𝑏𝑡0, 

by induction we have 

𝑤 𝑥,𝑚𝑡0 + 𝑡 ≤ 𝑤 𝑥, 𝑡 + 𝑚𝑚𝑡0  on  𝑅𝑛 × 0,∞  
In particular, 𝑤 𝑥,𝑚𝑡0 ≤ 𝑚𝑚𝑡0. Thus for 𝑡 ∈ (𝑚𝑡0, 𝑚 + 1 𝑡0), 
𝑚 ∈ 𝐍, we observe that 

𝑤 𝑥, 𝑡 ≤ 𝑤 𝑥,𝑚𝑡0 + 𝑐 𝑡 − 𝑚𝑡0 ≤ 𝑏𝑏𝑡0 + 𝑐 𝑡 − 𝑚𝑡0
= 𝑏𝑏 + 𝑐 − 𝑏 𝑡 − 𝑚𝑡0 ≤ 𝑏𝑏 + 𝑐 − 𝑏 𝑡0 

Estimate from below is similar. Theorem 4.1 now follows. 

Global upper estimate (continued) 

𝑡 

𝑏𝑡0 

𝑡0 

𝑐𝑡0 



4.4 In the case of square of medium size 
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Lemma 4.5.  If 𝐷 > 1 with 𝑑 < 1, 𝐷 = 2𝑑, then there 
exists 𝑡0 > 0 such that 𝐴max 𝑡0 = 𝜙. 

𝑦 

𝑥 

−𝐷 

−𝐷 𝐷 −1 2⁄  1 2⁄  



We shall construct a supersolution of the obstacle 
problem 

max 𝑦𝑡 −
𝑦𝑥𝑥

1 + 𝑦𝑥2
− 1 + 𝑦𝑥2 1 2⁄ ,𝑦 − 𝑔(𝑥) = 0   

in  −𝐷,𝐷 × (0,∞) 

where 𝑔 𝑥 = − 𝑥 , 𝐷 = 2𝑑.  

To simplify the work, we seek a self-similar solution of form 

𝑦 𝑥, 𝑡 = 𝜆 𝑡 𝑌
𝑥
𝜆 𝑡

,　𝜆′ 𝑡 =
1
𝜆(𝑡)

− 1. 
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Obstacle problem 
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[ 1 2⁄ < 𝑑 < 1 yields an intermediate speed ] 

Lemma 4.5 together with Theorem 4.4 yields an upper 
bound for 𝑤. 

We construct a supersolution for the obstacle problem 
outside 𝐸 for 𝑉 = 𝜅 + 1 which leads the estimate for 
𝑤/𝑡 from below. 

Idea of the proof of Theorem 4.1 
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• Growth rate.  If 𝑓 = 𝑐1𝐸 , we do not know the 
existence of the growth rate lim

𝑡→∞
𝑤/𝑡. (One has to be 

careful that in the case of 𝐸 = 𝐵(0,𝑛 − 1) critical size 
the growth rate depends on the place.) 

• Dependence.  does the growth rate depend on 𝑓 or 𝐸 
continuously? 

• The value of the growth rate.  Is it possible to 
characterize this quantity? 

Open issues 



5. More examples (work in progress) 
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Consider for 1 2⁄ < 𝑅0 < 1, 𝑎 > 0 
𝐸 = 𝐵 −𝑎, 0 ,𝑅0 ∪ 𝐵 𝑎, 0 ,𝑅0  

Corollary 5.1.  (i) If 𝑎 > 0  is small enough to satisfy 
𝑎 + 𝑅0 < 1, then 𝑤 is bounded in 𝑅2. 

(ii) If 𝑎 > 0 a middle length, more precisely, 1 < 𝑎 + 𝑅0 <
2𝑅0. Then there exists 0 < 𝛼 ≤ 𝛽 < 𝑐 such that 

𝛼 ≤ lim inf
𝑡→∞

𝑤 𝑥, 𝑡
𝑡

≤ lim sup
𝑡→∞

𝑤 𝑥, 𝑡
𝑡

≤ 𝛽. 

(iii) If 𝑎 > 0 is large enough so that 𝑅0 < 𝑎, then 𝑤 is 
bounded. 
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(i) (iii) (ii) 

Figure of two disks 

1 < 𝑎 + 𝑅0 < 2𝑅0 

2𝑎 𝑅0 𝑎 𝑅0 
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Time dependent source term 𝑐1𝐸(𝑡) 

Other examples 

First example 

𝐸 𝑡 = � 
𝐵 𝑎1,𝑅1                                                 for   0 ≤ 𝑡 ≤ 𝑡1
𝐵 𝑎1,𝑅1 ∪ 𝐵 𝑎2,𝑅2                          for  𝑡1 ≤ 𝑡 ≤ 𝑡2
𝐵 𝑎1,𝑅1 ∪ 𝐵 𝑎2,𝑅2 ∪ 𝐵 𝑎3,𝑅3   for  𝑡2 ≤ 𝑡 ≤ 𝑡3

 

Corollary 5.2. If there exists 𝑖 such that 𝑅𝑖 > 1, then 

𝑤(𝑥, 𝑡) 𝑡⁄ → 𝑐　as　𝑡 → ∞. 

If 𝐵 𝑎𝑖 ,𝑅𝑖 ∩ 𝐵 𝑎𝑗 ,𝑅𝑗 = ∅ for all 𝑖, 𝑗, 𝑖 ≠ 𝑗, then 𝑤(𝑥, 𝑡) is 
bounded if 𝑅𝑖 < 1 for all 𝑖. 
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If 𝐵 𝑎𝑖𝑅𝑖 ∩ 𝐵 𝑎𝑗𝑅𝑗 ≠ ∅ for some 𝑖, 𝑗 with 𝑖 ≠ 𝑗 and 
𝑅𝑖 < 1 for all 𝑖, what is the growth rate? 

Open problem 

Second example 
The source term is  

𝑐1𝐵 0,𝑅 𝑡  

with a continuous function 𝑡 ↦ 𝑅 𝑡 . 



40 

Corollary 5.3.  Assume that there exists 

lim
𝑇→∞

𝑡 ∈ [0,𝑇] 𝑅 𝑡 < 1
𝑇

=:𝛼− 

lim
𝑇→∞

𝑡 ∈ [0,𝑇] 𝑅 𝑡 = 1
𝑇

=:𝛼 

lim
𝑇→∞

𝑡 ∈ [0,𝑇] 𝑅 𝑡 > 1
𝑇

=:𝛼+. 

Then 

lim
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

= 𝑐 𝛼 + 𝛼+   for  𝑥 ∈ 𝐵 0,1              

= 𝑐 1 − 𝛼−      

lim
𝑡→∞

𝑤(𝑥, 𝑡)
𝑡

= 𝑐𝛼+              for  𝑥 ∈ 𝑅2 ∖ 𝐵 0,1 .   

 

Asymptotic speed 



We have studied asymptotic speed for the level-set 
equation of the eikonal curvature flow equation with 
source term. 

• Spherical symmetric case: asymptotic speed is 
computable. 

• Lipschitz source term: existence of asymptotic speed 
• Case of intermediate speed: application of eikonal 

curvature flow equation with obstacle. 
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Summary 
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