Aubry Mather theory for weakly coupled systems of Hamilton-Jacobi equations

Maxime Zavidovique

UPMC

Rennes, May 30th 2016

Work in collaboration with Andrea Davini (La Sapienza, Roma 1), Antonio Siconolfi (La Sapienza, Roma 1).

1 / 28

Plan

PDE aspects

2 Dynamical aspects

M. Zavidovique (UPMC)

Weak KAM for systems

Rennes, May 30th 2016 2 / 28

- 2

★ Ξ ► < Ξ ►</p>

< □ > < ---->

References

Related works by

- Camilli-Ley-Loreti-Nguyen,
- Mitake-Tran,
- Cagnetti-Gomes-Mitake-Tran,
- Mitake-Siconolfi-Tran-Yamada,
- Ibrahim-Siconolfi-Zabad

• ...

Plan

2 Dynamical aspects

M. Zavidovique (UPMC)

Weak KAM for systems

Rennes, May 30th 2016 4 / 28

3

・ロト ・ 理ト ・ ヨト ・ ヨト

Evolution equation

$$\frac{\partial u_i}{\partial t} + H_i(x, D_x u_i) + \sum_{j=1}^m b_{ij}(x)u_j(t, x) = 0 \quad \text{in } (0, +\infty) \times \mathbb{T}^N.$$
 (EHJ)

for $i \in \{1, ..., m\}$, with initial conditions $u_i(0, x) = u_i^0(x)$ where the initial conditions are Lipschitz continuous.

Evolution equation

$$\frac{\partial u_i}{\partial t} + H_i(x, D_x u_i) + \sum_{j=1}^m b_{ij}(x)u_j(t, x) = 0 \quad \text{in } (0, +\infty) \times \mathbb{T}^N.$$
 (EHJ)

for $i \in \{1, ..., m\}$, with initial conditions $u_i(0, x) = u_i^0(x)$ where the initial conditions are Lipschitz continuous. In matrix notations:

n matrix notations:

0

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = 0,$$

where $B(x) = (b_{ij}(x))_{1 \leq i,j \leq m}$ and $\mathbb{H}(x, D_x \mathbf{u}) = (H_i(x, D_x u_i))_{1 \leq i \leq m}$.

Stationary equation

$$H_i(x, D_x u_i) + \sum_{j=1}^m b_{ij}(x)u_j(x) = c \quad \text{in } (0, +\infty) \times \mathbb{T}^N.$$
 (SHJ)

for $i \in \{1, \ldots, m\}$, and some $c \in \mathbb{R}$.

Stationary equation

$$H_i(x, D_x u_i) + \sum_{j=1}^m b_{ij}(x)u_j(x) = c \quad \text{in } (0, +\infty) \times \mathbb{T}^N.$$
 (SHJ)

for $i \in \{1, \ldots, m\}$, and some $c \in \mathbb{R}$. In matrix notations:

 $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c\mathbb{1}.$

Stationary equation

$$H_i(x, D_x u_i) + \sum_{j=1}^m b_{ij}(x) u_j(x) = c \quad \text{in } (0, +\infty) \times \mathbb{T}^N.$$
 (SHJ)

for $i \in \{1, \ldots, m\}$, and some $c \in \mathbb{R}$. In matrix notations:

 $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c\mathbb{1}.$

All considered functions will be at least continuous .

Stationary equation

$$H_i(x, D_x u_i) + \sum_{j=1}^m b_{ij}(x)u_j(x) = c \quad \text{in } (0, +\infty) \times \mathbb{T}^N.$$
 (SHJ)

for $i \in \{1, \ldots, m\}$, and some $c \in \mathbb{R}$. In matrix notations:

 $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c\mathbb{1}.$

All considered functions will be at least continuous . All solutions, subsolutions, supersolutions are meant in the viscosity sense.

The Hypotheses

• The Hamiltonians :

- (H1) $H_i: \mathbb{T}^N \times \mathbb{R}^N \to \mathbb{R}$ is continuous ;
- (H2) $p \mapsto H_i(x, p)$ is strictly convex on \mathbb{R}^N for any $x \in M$;
- (H3) there exist two superlinear functions $\alpha, \beta : \mathbb{R}_+ \to \mathbb{R}$ such that
 - $\alpha\left(|\pmb{p}|\right)\leqslant H_i(x,\pmb{p})\leqslant\beta\left(|\pmb{p}|\right)\qquad\text{for all }(x,\pmb{p})\in M\times\mathbb{R}^N.$

E Sac

글 > - + 글 >

The Hypotheses

The Hamiltonians :

- $H_i: \mathbb{T}^N \times \mathbb{R}^N \to \mathbb{R}$ is continuous; (H1)
- (H2) $p \mapsto H_i(x, p)$ is strictly convex on \mathbb{R}^N for any $x \in M$;
- (H3) there exist two superlinear functions $\alpha, \beta : \mathbb{R}_+ \to \mathbb{R}$ such that

 $\alpha(|p|) \leq H_i(x,p) \leq \beta(|p|)$ for all $(x,p) \in M \times \mathbb{R}^N$.

The coupling matrix :

- The function $x \mapsto B(x)$ is continuous,
- ▶ $b_{ii} \ge 0$, $b_{ij} \le 0$ for $j \ne i$, $\sum_{i=1}^{m} b_{ij} \ge 0$ for any $i \in \{1, ..., m\}$.
- It is degenerate : $\sum_{i=1}^{m} b_{ij} = 0$ for any $i = 1, \dots, m$.

► B(x) is irreducible : $\forall \mathcal{I} \subseteq \{1, \ldots, m\}, \exists i \in \mathcal{I}, \exists i \notin \mathcal{I}, b_{ii} \neq 0$.

7 / 28

Why those hypotheses?

• The hypotheses on the *H_i* are standard in weak KAM theory. They allow usually to use variational arguments with the use of the Lax–Oleinik formula, which involves the Lagrangian.

Why those hypotheses?

- The hypotheses on the *H_i* are standard in weak KAM theory. They allow usually to use variational arguments with the use of the Lax–Oleinik formula, which involves the Lagrangian.
- First two hypotheses on B allow to obtain a comparison principle (Engler-Lenhart 91 on monotonous systems, Camilli-Ley-Loreti 10):

Theorem

Let \mathbf{u}_0 be a Lipschitz initial data and $\mathbf{w}, \mathbf{v} : ([0, T) \times \mathbb{T}^N)^m$ be a subsolution and a supersolution of EHJ, then $\mathbf{w} \leq \mathbf{v}$. In particular there exists a unique solution \mathbf{u} to EHJ.

We denote $S(t)\mathbf{u}_0 = \mathbf{u}(t, \cdot)$.

- 3

Why those hypotheses?

• The degeneracy hypothesis implies that $\mathbb{1} \in \text{Ker } B$. In particular sets of solutions and subsolutions are invariant by addition of constant vectors : $k\mathbb{1}$, $k \in \mathbb{R}$.

Why those hypotheses?II

- The degeneracy hypothesis implies that 1 ∈ Ker B. In particular sets of solutions and subsolutions are invariant by addition of constant vectors : k1, k∈ ℝ.
- Irreducibility equivalent to for all i, j there is n such that $B_{ij}^n \neq 0$: the system cannot be split, all equations communicate. Ker $B = \mathbb{R}1$.

Irreducibility implies a priori compactness :

Proposition

Let $c \in \mathbb{R}$, there exists a constant K such that if **u** verifies $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c\mathbf{1}$, then each u_i is K–Lipschitz and $\max u_i(x) - \min u_j(y) \leq K$.

Those are exactly the ingredients to prove the weak KAM Theorem:

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant c_0 such that the stationary equation $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c_0 \mathbb{1}$ admits solutions. Solutions to this equation are called weak KAM solutions and the constant c_0 is the critical constant.

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant c_0 such that the stationary equation $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c_0 \mathbb{1}$ admits solutions. Solutions to this equation are called weak KAM solutions and the constant c_0 is the critical constant.

It should be noted that stationary and evolutionary equations are linked.

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant c_0 such that the stationary equation $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c_0 \mathbb{1}$ admits solutions. Solutions to this equation are called weak KAM solutions and the constant c_0 is the critical constant.

It should be noted that stationary and evolutionary equations are linked.

• **u** is a weak KAM solution if and only if $t \mapsto S(t)\mathbf{u} + tc_0$ is constant.

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant c_0 such that the stationary equation $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c_0 \mathbb{1}$ admits solutions. Solutions to this equation are called weak KAM solutions and the constant c_0 is the critical constant.

It should be noted that stationary and evolutionary equations are linked.

- **u** is a weak KAM solution if and only if $t \mapsto S(t)\mathbf{u} + tc_0$ is constant.
- **u** is a critical subsolution : $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ if and only if $t \mapsto S(t)\mathbf{u} + tc_0$ is non-decreasing.

10 / 28

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant c_0 such that the stationary equation $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} = c_0 \mathbb{1}$ admits solutions. Solutions to this equation are called weak KAM solutions and the constant c_0 is the critical constant.

It should be noted that stationary and evolutionary equations are linked.

- **u** is a weak KAM solution if and only if $t \mapsto S(t)\mathbf{u} + tc_0$ is constant .
- **u** is a critical subsolution : $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ if and only if $t \mapsto S(t)\mathbf{u} + tc_0$ is non-decreasing.
- In particular, $S(t)\mathbf{u}$ is a critical subsolution for all t > 0.

It is a particular case of systems with one equation, one Hamiltonian $H_1 = H$. Assume it is Lipschitz in this slide.

It is a particular case of systems with one equation, one Hamiltonian $H_1 = H$. Assume it is Lipschitz in this slide. A subsolution is a Lipschitz function $u : \mathbb{T}^N \to \mathbb{R}$ such that $H(x, D_x u) \leq c_0$ almost everywhere.

It is a particular case of systems with one equation, one Hamiltonian $H_1 = H$. Assume it is Lipschitz in this slide. A subsolution is a Lipschitz function $u : \mathbb{T}^N \to \mathbb{R}$ such that $H(x, D_x u) \leq c_0$ almost everywhere. The Aubry set \mathcal{A} is defined by, and verifies the following properties:

It is a particular case of systems with one equation, one Hamiltonian $H_1 = H$. Assume it is Lipschitz in this slide. A subsolution is a Lipschitz function $u : \mathbb{T}^N \to \mathbb{R}$ such that $H(x, D_x u) \leq c_0$ almost everywhere. The Aubry set \mathcal{A} is defined by, and verifies the following properties:

The Aubry set A is defined by, and verifies the following properties.

- if $x \in A$, any subsolution u is differentiable at x and $H(x, D_x u) = c_0$.
- (Fathi-Siconolfi) there exists a C¹ subsolution u such that H(x, D_xu) < c₀ if x ∉ A.
- If two weak KAM solutions coincide on A, they are equal.

It is a particular case of systems with one equation, one Hamiltonian $H_1 = H$. Assume it is Lipschitz in this slide. A subsolution is a Lipschitz function $u : \mathbb{T}^N \to \mathbb{R}$ such that $H(x, D_x u) \leq c_0$ almost everywhere.

The Aubry set ${\mathcal A}$ is defined by, and verifies the following properties:

- if $x \in A$, any subsolution u is differentiable at x and $H(x, D_x u) = c_0$.
- (Fathi-Siconolfi) there exists a C¹ subsolution u such that H(x, D_xu) < c₀ if x ∉ A.
- If two weak KAM solutions coincide on A, they are equal.

<u>Goal</u>: recover those results for systems (no dynamical or variational tools. Only PDE methods) .

Let us set S the set of **u** critical subsolutions : are equivalent

Let us set S the set of **u** critical subsolutions : are equivalent • $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ in the viscosity sense,

Let us set S the set of **u** critical subsolutions : are equivalent

- $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ in the viscosity sense,
- **u** Lipschitz and $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ almost everywhere,

Let us set S the set of **u** critical subsolutions : are equivalent

- $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ in the viscosity sense,
- **u** Lipschitz and $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ almost everywhere,
- $t \mapsto S(t)\mathbf{u} + tc_0$ is non-decreasing.

Let us set S the set of **u** critical subsolutions : are equivalent

- $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ in the viscosity sense,
- **u** Lipschitz and $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ almost everywhere,
- $t \mapsto S(t)\mathbf{u} + tc_0$ is non-decreasing.

the second point depends highly on convexity of the H_i .

Let us set \mathcal{S} the set of \mathbf{u} critical subsolutions : are equivalent

- $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leqslant c_0 \mathbb{1}$ in the viscosity sense ,
- **u** Lipschitz and $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c_0 \mathbb{1}$ almost everywhere ,
- $t \mapsto S(t)\mathbf{u} + tc_0$ is non-decreasing.

the second point depends highly on convexity of the H_i . The set S is closed and convex .

The Aubry set

Theorem (Davini-Z.)

There exists a non-empty closed set $\mathcal{A} \subset \mathbb{T}^N$ such that:

- for all $\mathbf{u} \in S$ and t > 0, $S(t)\mathbf{u}(x) + tc_0 = \mathbf{u}(x)$.
- 2 there exists a subsolution $\tilde{u},\ C^1$ on $\mathbb{T}^N\setminus \mathcal{A}$ such that

 $\forall x \in \mathbb{T}^N \setminus \mathcal{A}, \quad \mathbb{H}(x, D_x \tilde{\mathbf{u}}) + B(x) \tilde{\mathbf{u}} < c_0 \mathbb{1}.$

The Aubry set

Theorem (Davini-Z.)

There exists a non-empty closed set $\mathcal{A} \subset \mathbb{T}^N$ such that:

- for all $\mathbf{u} \in S$ and t > 0, $S(t)\mathbf{u}(x) + tc_0 = \mathbf{u}(x)$.
- 2 there exists a subsolution $\tilde{u},\ C^1$ on $\mathbb{T}^N\setminus \mathcal{A}$ such that

 $\forall x \in \mathbb{T}^N \setminus \mathcal{A}, \quad \mathbb{H}(x, D_x \tilde{\mathbf{u}}) + B(x) \tilde{\mathbf{u}} < c_0 \mathbb{1}.$

In the second point, strict inequalities hold for all components. In particular, if $x \notin A$, for all t > 0, $S(t)\tilde{u}(x) + tc_0 > \tilde{u}(x)$.

The Aubry set

Theorem (Davini-Z.)

There exists a non-empty closed set $\mathcal{A} \subset \mathbb{T}^N$ such that:

- for all $\mathbf{u} \in S$ and t > 0, $S(t)\mathbf{u}(x) + tc_0 = \mathbf{u}(x)$.
- 2 there exists a subsolution $\tilde{u},\ C^1$ on $\mathbb{T}^N\setminus \mathcal{A}$ such that

 $\forall x \in \mathbb{T}^N \setminus \mathcal{A}, \quad \mathbb{H}(x, D_x \tilde{\mathbf{u}}) + B(x) \tilde{\mathbf{u}} < c_0 \mathbb{1}.$

In the second point, strict inequalities hold for all components. In particular, if $x \notin A$, for all t > 0, $S(t)\tilde{u}(x) + tc_0 > \tilde{u}(x)$.

Open question

Does there exist a C^1 subsolution?

It is only defined on the base \mathbb{T}^{N} ! Same for all components of the system.

It is only defined on the base \mathbb{T}^{N} ! Same for all components of the system. If $c < c_0$, no function verifies $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c\mathbb{1}$.

It is only defined on the base \mathbb{T}^N ! Same for all components of the system. If $c < c_0$, no function verifies $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c\mathbb{1}$. It entails some rigidity for the critical equation:

Proposition

1 if **u** and **v** are in S and $x \in A$, then $(\mathbf{u} - \mathbf{v})(x) \in \mathbb{R}\mathbb{1}$.

It is only defined on the base \mathbb{T}^N ! Same for all components of the system. If $c < c_0$, no function verifies $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c\mathbb{1}$. It entails some rigidity for the critical equation:

Proposition

- **1** if **u** and **v** are in S and $x \in A$, then $(\mathbf{u} \mathbf{v})(x) \in \mathbb{R}\mathbb{1}$.
- (uniqueness set) if u and v are weak KAM solutions which are equal on A then they coincide.

프 에 에 프 어

It is only defined on the base \mathbb{T}^N ! Same for all components of the system. If $c < c_0$, no function verifies $\mathbb{H}(x, D_x \mathbf{u}) + B(x)\mathbf{u} \leq c\mathbb{1}$. It entails some rigidity for the critical equation:

Proposition

- **1** if **u** and **v** are in S and $x \in A$, then $(\mathbf{u} \mathbf{v})(x) \in \mathbb{R}\mathbb{1}$.
- (uniqueness set) if u and v are weak KAM solutions which are equal on A then they coincide.

Open question Are subsolutions differentiable on the Aubry set?

- 3

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

• F_i strictly convex and superlinear,

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

- F_i strictly convex and superlinear,
- $F_i \ge 0$ and $F_i(x, 0) = 0$,

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

- F_i strictly convex and superlinear,
- $F_i \ge 0$ and $F_i(x, 0) = 0$,
- $f_i \ge 0$ and $\cap f_i^{-1}\{0\} \ne \emptyset$.

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

- F_i strictly convex and superlinear,
- $F_i \ge 0$ and $F_i(x, 0) = 0$,
- $f_i \ge 0$ and $\cap f_i^{-1}\{0\} \ne \emptyset$.

1 $c_0 = 0$,

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

- F_i strictly convex and superlinear,
- $F_i \ge 0$ and $F_i(x, 0) = 0$,
- $f_i \ge 0$ and $\cap f_i^{-1}\{0\} \ne \emptyset$.
- **1** $c_0 = 0$,
- **2** $A = \cap f_i^{-1}\{0\},$

Assume each Hamiltonian is of the form $H_i(x, p) = F_i(x, p) - f_i(x)$ with

- F_i strictly convex and superlinear,
- $F_i \ge 0$ and $F_i(x, 0) = 0$,
- $f_i \ge 0$ and $\cap f_i^{-1}\{0\} \ne \emptyset$.
- **1** $c_0 = 0$,
- **2** $A = \cap f_i^{-1}\{0\},$
- **③** if $\mathbf{u} \in S$ and $x \in A$ then $\mathbf{u}(x) \in \mathbb{R}\mathbb{1}$.

Theorem (Camilli, Ley, Loreti, N'guyen)

For any \mathbf{u}_0 , the solution $S(t)\mathbf{u}_0$ to EHJ converges to a weak KAM solution as $t \to +\infty$.

Plan

PDE aspects

M. Zavidovique (UPMC)

Weak KAM for systems

Rennes, May 30th 2016 16 / 28

- 2

(本語)と 本語 と 本語 と

Classical Aubry Mather Theory

Define $L(x,v) = \sup_p \langle p,v \rangle - H(x,p)$ then if $\gamma: [0,t] \to \mathbb{T}^N$ is a loop ,

$$\int_0^t L(\gamma, \dot{\gamma}) \geqslant -tc_0.$$

- ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

Classical Aubry Mather Theory

Define $L(x,v) = \sup_p \langle p,v \rangle - H(x,p)$ then if $\gamma: [0,t] \to \mathbb{T}^N$ is a loop ,

$$\int_0^t L(\gamma, \dot{\gamma}) \geqslant -tc_0.$$

A point $x \in \mathcal{A}$ if and only if there are loops $\gamma_n : [0, t_n] \to \mathbb{T}^N$ with $\gamma_n(0) = \gamma_n(t_n) = x$ and $t_n \ge 1$ such that

$$\int_0^{t_n} L(\gamma_n, \dot{\gamma}_n) + t_n c_0 \to 0.$$

We assume until the end that B(x) = B does not depend on x.

We assume until the end that B(x) = B does not depend on x. Recall: $b_{ii} \ge 0$, $b_{ij} \le 0$ for $j \ne i$, $\sum_{j=1}^{m} b_{ij} = 0$ for any $i \in \{1, ..., m\}$.

We assume until the end that B(x) = B does not depend on x. Recall: $b_{ii} \ge 0$, $b_{ij} \le 0$ for $j \ne i$, $\sum_{j=1}^{m} b_{ij} = 0$ for any $i \in \{1, \dots, m\}$. It is equivalent to: $\forall t > 0$, e^{-tB} is a stochastic matrix ($e^{-tB} \mathbb{1} = \mathbb{1}$).

We assume until the end that B(x) = B does not depend on x. Recall: $b_{ii} \ge 0$, $b_{ij} \le 0$ for $j \ne i$, $\sum_{j=1}^{m} b_{ij} = 0$ for any $i \in \{1, \dots, m\}$. It is equivalent to: $\forall t > 0$, e^{-tB} is a stochastic matrix $(e^{-tB}\mathbb{1} = \mathbb{1})$.

- Let \mathcal{D} be the space of càdlàg paths $\omega : [0, +\infty) \to \{1, \dots, m\}$.
- Let $\mathcal{D}(\mathbb{R}^N)$ be the space of càdlàg paths $\omega : [0, +\infty) \to \mathbb{R}^N$.

We assume until the end that B(x) = B does not depend on x. Recall: $b_{ii} \ge 0$, $b_{ij} \le 0$ for $j \ne i$, $\sum_{j=1}^{m} b_{ij} = 0$ for any $i \in \{1, \dots, m\}$. It is equivalent to: $\forall t > 0$, e^{-tB} is a stochastic matrix $(e^{-tB}\mathbb{1} = \mathbb{1})$.

- Let \mathcal{D} be the space of càdlàg paths $\omega : [0, +\infty) \to \{1, \dots, m\}$.
- Let $\mathcal{D}(\mathbb{R}^N)$ be the space of càdlàg paths $\omega : [0, +\infty) \to \mathbb{R}^N$.
- There exists a Probability measure \mathbb{P} on \mathcal{D} such that for t, h > 0, $i \neq j$,

$$\mathbb{P}(\omega(t+h)=j \mid \omega(t)=i)=-hb_{ij}+o(h).$$

Stopping times and admissible strategies

- A stopping time $\tau : \mathcal{D} \to [0, +\infty)$ is a measurable function (random variable) adapted to the natural filtration on \mathcal{D} . Roughly speaking: if $\omega^1_{[0,T]} = \omega^2_{[0,T]}$ and $\tau(\omega^1) < T$ then $\tau(\omega^1) = \tau(\omega^2)$.
- An admissible strategy is a random variable : $\Xi : \mathcal{D} \to \mathcal{D}(\mathbb{R}^N)$ which is
 - ▶ locally (in time) bounded: for all t > 0 there is R > 0 such that $\Xi(\omega)(s) \leq R$, for a.e. ω and $s \leq t$.
 - ▶ adapted to the natural filtration on \mathcal{D} or non anticipating. This means that $\omega_{[0,T]}^1 = \omega_{[0,T]}^2$ implies $\Xi(\omega^1)_{[0,T]} = \Xi(\omega^2)_{[0,T]}$.

Trajectories

Given an admissible strategy, define its random trajectory by

$$\mathcal{I}(\Xi,\omega,t) = \int_0^t \Xi(\omega,s) \mathrm{d}s.$$

If τ is a bounded stopping time and $x \in \mathbb{T}^N$, define $\mathcal{K}(\tau, x)$ as the set of trajectories reaching x at τ meaning

$$\forall \omega \in \mathcal{D}, \quad \mathcal{I}(\Xi, \omega, \tau(\omega)) = x.$$

Lax–Oleinik type caracterization of subsolutions (Mitake, Siconolfi, Tran, Yamada) Define $L_i(x, v) = \sup_p \langle p, v \rangle - H_i(x, p)$ then

Theorem

• The function **u** is a subsolution if and only if for all $x, y \in \mathbb{T}^N$, $i \in \{1, ..., m\}$ bounded stopping time τ and admissible strategy $\Xi \in \mathcal{K}(\tau, y - x)$

$$u_i(x) - \mathbb{E}_i ig(u_{\omega(au)}(y) ig) \leqslant \mathbb{E}_i \Big[\int_0^{ au(\omega)} L_{\omega(s)} ig(x + \mathcal{I}(\Xi)(s), -\Xi(s) ig) + c_0 ds \Big].$$

21 / 28

Lax–Oleinik type caracterization of subsolutions (Mitake, Siconolfi, Tran, Yamada) Define $L_i(x, v) = \sup_p \langle p, v \rangle - H_i(x, p)$ then

Theorem

• The function **u** is a subsolution if and only if for all $x, y \in \mathbb{T}^N$, $i \in \{1, ..., m\}$ bounded stopping time τ and admissible strategy $\Xi \in \mathcal{K}(\tau, y - x)$

$$u_i(x) - \mathbb{E}_i(u_{\omega(au)}(y)) \leqslant \mathbb{E}_i\Big[\int_0^{ au(\omega)} L_{\omega(s)}(x + \mathcal{I}(\Xi)(s), -\Xi(s)) + c_0 ds\Big].$$

 Given b ∈ ℝ^m and x ∈ T^N, there exists a subsolution such that u(x) = b if and only if for all i ∈ {1,...,m}, τ bounded stopping time and Ξ ∈ K(τ,0) admissible strategy

$$\mathbb{E}_i \Big[\int_0^{\tau(\omega)} L_{\omega(s)} \big(x + \mathcal{I}(\Xi)(s), -\Xi(s) \big) + c_0 \mathrm{d}s - b_i + b_{\omega(\tau)} \Big] \ge 0.$$

M. Zavidovique (UPMC)

Dynamical caracterization of the Aubry set (Ibrahim, Siconolfi, Zabad)

Theorem

The following assertions are equivalent:

A point x is in the Aubry set ;

Dynamical caracterization of the Aubry set (Ibrahim, Siconolfi, Zabad)

Theorem

The following assertions are equivalent:

- A point x is in the Aubry set ;
- **2** The following relation holds for some $\mathbf{b} \in \mathbb{R}^m$ and some $i \in \{1, ..., m\}$:

$$\inf_{\substack{\tau \gg 1 \\ \Xi \in \mathcal{K}(\tau,0)}} \mathbb{E}_i \Big[\int_0^{\tau(\omega)} L_{\omega(s)} \big(x + \mathcal{I}(\Xi)(s), -\Xi(s) \big) + c_0 \mathrm{d}s - b_i + b_{\omega(\tau)} \Big] = 0$$

Dynamical caracterization of the Aubry set (Ibrahim, Siconolfi, Zabad)

Theorem

The following assertions are equivalent:

- A point x is in the Aubry set ;
- **2** The following relation holds for some $\mathbf{b} \in \mathbb{R}^m$ and some $i \in \{1, ..., m\}$:

$$\inf_{\substack{\tau \gg 1 \\ \Xi \in \mathcal{K}(\tau,0)}} \mathbb{E}_i \Big[\int_0^{\tau(\omega)} L_{\omega(s)} \big(x + \mathcal{I}(\Xi)(s), -\Xi(s) \big) + c_0 \mathrm{d}s - b_i + b_{\omega(\tau)} \Big] = 0$$

3 The following relation holds for some $\mathbf{b} \in \mathbb{R}^m$ and all $i \in \{1, ..., m\}$:

$$\inf_{\substack{\tau \gg 1 \\ \Xi \in \mathcal{K}(\tau,0)}} \mathbb{E}_i \Big[\int_0^{\tau(\omega)} L_{\omega(s)} \big(x + \mathcal{I}(\Xi)(s), -\Xi(s) \big) + c_0 \mathrm{d}s - b_i + b_{\omega(\tau)} \Big] = 0$$

Lax–Oleinik for EHJ (Davini, Siconolfi, Z.)

Theorem

Let \mathbf{u}^0 be a Lipschitz initial data, and t > 0, $i \in \{1, \dots, m\}$, then

$$(S(t)\mathbf{u}^{0})_{i}(x) = \min_{\Xi} \mathbb{E}_{i} \Big[u_{\omega(t)} \big(\mathcal{I}(\Xi, \omega, t) \big) \\ + \int_{0}^{t} L_{\omega(s)} \big(x + \mathcal{I}(\Xi)(s), -\Xi(s) \big) \mathrm{d}s \Big].$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Idea of proof I: inequality

Let
$$\Xi$$
 be an admissible strategy, $t, h > 0$. Write
 $f(t) = \mathbb{E}_i \Big[u_{\omega(t)} \big(\mathcal{I}(\Xi, \omega, t) \big) \Big]$. Write
 $\frac{f(t+h) - f(t)}{h} = \mathbb{E}_i \big(\psi_h(\omega) \big) + \mathbb{E}_i \big(\phi_h(\omega) \big)$

where

$$\begin{split} \psi_h(\omega) &:= \frac{u_{\omega(t+h)}\big(t,\mathcal{I}(\Xi,\omega,t)\big) - u_{\omega(t)}\big(t,\mathcal{I}(\Xi,\omega,t)\big)}{h}\\ \varphi_h(\omega) &:= \frac{u_{\omega(t+h)}\big(t+h,\mathcal{I}(\Xi,\omega,t+h)\big) - u_{\omega(t+h)}\big(t,\mathcal{I}(\Xi,\omega,t)\big)}{h}. \end{split}$$

Image: A matrix

Idea of proof II: inequality

Compute that

$$\mathbb{E}_{i}(\psi_{h}(\omega)) \to -\mathbb{E}_{i}[(B\mathbf{u})_{\omega(t)}(t,\mathcal{I}(\Xi,\omega,t))].$$

and that (when well defined)

 $\mathbb{E}_i(\phi_h(\omega)) \to \mathbb{E}_i[\partial_t u_{\omega(t)} + D_x u_{\omega(t)} \cdot \Xi(\omega, t)].$

▲ 車 ▶ ▲ 車 ▶ → 車 → の < (~

Idea of proof II: inequality

Compute that

$$\mathbb{E}_{i}(\psi_{h}(\omega)) \to -\mathbb{E}_{i}[(B\mathbf{u})_{\omega(t)}(t,\mathcal{I}(\Xi,\omega,t))].$$

and that (when well defined)

$$\mathbb{E}_i(\phi_h(\omega)) \to \mathbb{E}_i[\partial_t u_{\omega(t)} + D_{\mathsf{x}} u_{\omega(t)} \cdot \Xi(\omega, t)].$$

Combined with the Fenchel inequality : $-D_x u_{\omega(t)} \cdot \Xi(\omega, t) \leq H_{\omega(t)}(\mathcal{I}(\Xi, \omega, t), D_x u_{\omega(t)}) + L_{\omega(t)}(\mathcal{I}(\Xi, \omega, t), -\Xi(\omega, t))$ and by integrating between 0 and t yields

$$(S(t)\mathbf{u}^0)_i(x) \leq \mathbb{E}_i \Big[u_{\omega(t)} \big(\mathcal{I}(\Xi, \omega, t) \big) + \int_0^t L_{\omega(s)} \big(x + \mathcal{I}(\Xi)(s), -\Xi(s) \big) ds \Big].$$

B 🖌 🖌 B 🖒 🛛 B

Idea of proof: equality

For the equality, one needs to find a control such that the Fenchel inequality is an equality, which means that almost everywhere,

$$-\Xi(\omega,t) = \partial_{p}H_{\omega(t)}(\mathcal{I}(\Xi,\omega,t),D_{x}u_{\omega(t)})$$

Idea of proof: equality

For the equality, one needs to find a control such that the Fenchel inequality is an equality, which means that almost everywhere,

$$-\Xi(\omega,t) = \partial_{\rho}H_{\omega(t)}(\mathcal{I}(\Xi,\omega,t),D_{x}u_{\omega(t)})$$

The optimal Ξ is constructed using the fact that each u_i solves an equation of the form

 $\partial_t u_i + G_i(t, x, D_x u_i) = 0.$

This should give new insights on known (or not) results such as:

- vanishing discount problem (with Davini),
- long time behavior,
- ...

Thank you for your attention!

- 2

イロン イヨン イヨン イヨン