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Weakly coupled systems of Hamilton-Jacobi equations

Evolution equation

∂ui
∂t

+ Hi (x ,Dxui ) +
m∑
j=1

bij(x)uj(t, x) = 0 in (0,+∞)× TN . (EHJ) {EHJ}

for i ∈ {1, . . . ,m}, with initial conditions ui (0, x) = u0
i (x) where the initial

conditions are Lipschitz continuous.

In matrix notations:

∂u

∂t
+ H(x ,Dxu) + B(x)u = 0,

where B(x) =
(
bij(x)

)
16i ,j6m

and H(x ,Dxu) =
(
Hi (x ,Dxui )

)
16i6m

.
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Weakly coupled systems of Hamilton-Jacobi equations II

Stationary equation

Hi (x ,Dxui ) +
m∑
j=1

bij(x)uj(x) = c in (0,+∞)× TN . (SHJ) {SHJ}

for i ∈ {1, . . . ,m}, and some c ∈ R.

In matrix notations:

H(x ,Dxu) + B(x)u = c1.

All considered functions will be at least continuous .
All solutions, subsolutions, supersolutions are meant in the viscosity sense.
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The Hypotheses

1 The Hamiltonians :

(H1) Hi : TN × RN → R is continuous ;

(H2) p 7→ Hi (x , p) is strictly convex on RN for any x ∈ M;

(H3) there exist two superlinear functions α, β : R+ → R such that

α (|p|) 6 Hi (x , p) 6 β (|p|) for all (x , p) ∈ M × RN .

2 The coupling matrix :
I The function x 7→ B(x) is continuous ,

I bii > 0, bij 6 0 for j 6= i ,
m∑
j=1

bij > 0 for any i ∈ {1, . . . ,m}.

I It is degenerate :
m∑
j=1

bij = 0 for any i = 1, . . . ,m.

I B(x) is irreducible : ∀I ( {1, . . . ,m}, ∃i ∈ I, ∃j 6∈ I, bij 6= 0 .
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Why those hypotheses?

The hypotheses on the Hi are standard in weak KAM theory. They
allow usually to use variational arguments with the use of the
Lax–Oleinik formula, which involves the Lagrangian.

First two hypotheses on B allow to obtain a comparison principle
(Engler-Lenhart 91 on monotonous systems, Camilli-Ley-Loreti 10):

Theorem

Let u0 be a Lipschitz initial data and w, v :
(
[0,T )× TN

)m
be a

subsolution and a supersolution of EHJ, then w 6 v .
In particular there exists a unique solution u to EHJ.

We denote S(t)u0 = u(t, ·).

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 8 / 28



Why those hypotheses?

The hypotheses on the Hi are standard in weak KAM theory. They
allow usually to use variational arguments with the use of the
Lax–Oleinik formula, which involves the Lagrangian.

First two hypotheses on B allow to obtain a comparison principle
(Engler-Lenhart 91 on monotonous systems, Camilli-Ley-Loreti 10):

Theorem

Let u0 be a Lipschitz initial data and w, v :
(
[0,T )× TN

)m
be a

subsolution and a supersolution of EHJ, then w 6 v .
In particular there exists a unique solution u to EHJ.

We denote S(t)u0 = u(t, ·).

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 8 / 28



Why those hypotheses?II

The degeneracy hypothesis implies that 1 ∈ Ker B. In particular sets
of solutions and subsolutions are invariant by addition of constant
vectors : k1, k ∈ R.

Irreducibility equivalent to for all i , j there is n such that Bn
ij 6= 0 : the

system cannot be split, all equations communicate. Ker B = R1 .

Irreducibility implies a priori compactness :

Proposition

Let c ∈ R, there exists a constant K such that if u verifies
H(x ,Dxu) + B(x)u 6 c1, then each ui is K–Lipschitz and
max ui (x)−min uj(y) 6 K.
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Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant c0 such that the stationary equation
H(x ,Dxu) + B(x)u = c01 admits solutions.
Solutions to this equation are called weak KAM solutions and the constant
c0 is the critical constant .

It should be noted that stationary and evolutionary equations are linked.

u is a weak KAM solution if and only if t 7→ S(t)u + tc0 is constant .

u is a critical subsolution : H(x ,Dxu) + B(x)u 6 c01 if and only if
t 7→ S(t)u + tc0 is non–decreasing .

In particular, S(t)u is a critical subsolution for all t > 0.
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Classical weak KAM theory

It is a particular case of systems with one equation, one Hamiltonian
H1 = H. Assume it is Lipschitz in this slide.

A subsolution is a Lipschitz function u : TN → R such that
H(x ,Dxu) 6 c0 almost everywhere.
The Aubry set A is defined by, and verifies the following properties:

1 if x ∈ A, any subsolution u is differentiable at x and H(x ,Dxu) = c0 .

2 (Fathi-Siconolfi) there exists a C 1 subsolution u such that
H(x ,Dxu) < c0 if x /∈ A.

3 if two weak KAM solutions coincide on A, they are equal.

Goal: recover those results for systems (no dynamical or variational tools.
Only PDE methods) .
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Critical subsolutions

Let us set S the set of u critical subsolutions : are equivalent

H(x ,Dxu) + B(x)u 6 c01 in the viscosity sense ,

u Lipschitz and H(x ,Dxu) + B(x)u 6 c01 almost everywhere ,

t 7→ S(t)u + tc0 is non–decreasing .

the second point depends highly on convexity of the Hi .
The set S is closed and convex .
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The Aubry set

Theorem (Davini–Z.)

There exists a non–empty closed set A ⊂ TN such that:

1 for all u ∈ S and t > 0, S(t)u(x) + tc0 = u(x) .

2 there exists a subsolution ũ, C 1 on TN \ A such that

∀x ∈ TN \ A, H(x ,Dx ũ) + B(x)ũ < c01.

In the second point, strict inequalities hold for all components. In
particular, if x /∈ A, for all t > 0, S(t)ũ(x) + tc0 > ũ(x) .

Open question

Does there exist a C 1 subsolution?
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Properties of the Aubry set

It is only defined on the base TN ! Same for all components of the system.

If c < c0, no function verifies H(x ,Dxu) + B(x)u 6 c1.
It entails some rigidity for the critical equation:

Proposition

1 if u and v are in S and x ∈ A, then (u− v)(x) ∈ R1.

2 (uniqueness set) if u and v are weak KAM solutions which are equal
on A then they coincide.

Open question

Are subsolutions differentiable on the Aubry set?
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A motivating example à la Namah–Roquejoffre (Camilli,
Ley, Loreti, N’guyen)

Assume each Hamiltonian is of the form Hi (x , p) = Fi (x , p)− fi (x) with

Fi strictly convex and superlinear,

Fi > 0 and Fi (x , 0) = 0,

fi > 0 and ∩f −1
i {0} 6= ∅.

1 c0 = 0,

2 A = ∩f −1
i {0},

3 if u ∈ S and x ∈ A then u(x) ∈ R1.

Theorem (Camilli, Ley, Loreti, N’guyen)

For any u0, the solution S(t)u0 to EHJ converges to a weak KAM solution
as t → +∞.
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Fi strictly convex and superlinear,

Fi > 0 and Fi (x , 0) = 0,

fi > 0 and ∩f −1
i {0} 6= ∅.

1 c0 = 0,

2 A = ∩f −1
i {0},

3 if u ∈ S and x ∈ A then u(x) ∈ R1.

Theorem (Camilli, Ley, Loreti, N’guyen)

For any u0, the solution S(t)u0 to EHJ converges to a weak KAM solution
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A motivating example à la Namah–Roquejoffre (Camilli,
Ley, Loreti, N’guyen)

Assume each Hamiltonian is of the form Hi (x , p) = Fi (x , p)− fi (x) with

Fi strictly convex and superlinear,

Fi > 0 and Fi (x , 0) = 0,

fi > 0 and ∩f −1
i {0} 6= ∅.

1 c0 = 0,

2 A = ∩f −1
i {0},

3 if u ∈ S and x ∈ A then u(x) ∈ R1.

Theorem (Camilli, Ley, Loreti, N’guyen)

For any u0, the solution S(t)u0 to EHJ converges to a weak KAM solution
as t → +∞.

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 15 / 28
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A motivating example à la Namah–Roquejoffre (Camilli,
Ley, Loreti, N’guyen)

Assume each Hamiltonian is of the form Hi (x , p) = Fi (x , p)− fi (x) with

Fi strictly convex and superlinear,

Fi > 0 and Fi (x , 0) = 0,

fi > 0 and ∩f −1
i {0} 6= ∅.

1 c0 = 0,

2 A = ∩f −1
i {0},

3 if u ∈ S and x ∈ A then u(x) ∈ R1.

Theorem (Camilli, Ley, Loreti, N’guyen)

For any u0, the solution S(t)u0 to EHJ converges to a weak KAM solution
as t → +∞.

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 15 / 28
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Plan

1 PDE aspects

2 Dynamical aspects
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Classical Aubry Mather Theory

Define L(x , v) = supp〈p, v〉 − H(x , p) then if γ : [0, t]→ TN is a loop ,∫ t

0
L(γ, γ̇) > −tc0.

A point x ∈ A if and only if there are loops γn : [0, tn]→ TN with
γn(0) = γn(tn) = x and tn > 1 such that∫ tn

0
L(γn, γ̇n) + tnc0 → 0.
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Independant coupling matrices and Markov processes

We assume until the end that B(x) = B does not depend on x .

Recall: bii > 0, bij 6 0 for j 6= i ,
m∑
j=1

bij = 0 for any i ∈ {1, . . . ,m}.

It is equivalent to: ∀t > 0, e−tB is a stochastic matrix (e−tB1 = 1).

Let D be the space of càdlàg paths ω : [0,+∞)→ {1, . . . ,m}.
Let D(RN) be the space of càdlàg paths ω : [0,+∞)→ RN .

There exists a Probability measure P on D such that for t, h > 0,
i 6= j ,

P(ω(t + h) = j | ω(t) = i) = −hbij + o(h).
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Stopping times and admissible strategies

A stopping time τ : D → [0,+∞) is a measurable function (random
variable ) adapted to the natural filtration on D .
Roughly speaking: if ω1

[0,T ] = ω2
[0,T ] and τ(ω1) < T then

τ(ω1) = τ(ω2).

An admissible strategy is a random variable : Ξ : D → D(RN) which
is

I locally (in time) bounded: for all t > 0 there is R > 0 such that
Ξ(ω)(s) 6 R, for a.e. ω and s 6 t.

I adapted to the natural filtration on D or non anticipating . This means
that ω1

[0,T ] = ω2
[0,T ] implies Ξ(ω1)[0,T ] = Ξ(ω2)[0,T ] .
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Trajectories

Given an admissible strategy , define its random trajectory by

I(Ξ, ω, t) =

∫ t

0
Ξ(ω, s)ds.

If τ is a bounded stopping time and x ∈ TN , define K(τ, x) as the set of
trajectories reaching x at τ meaning

∀ω ∈ D, I
(
Ξ, ω, τ(ω)

)
= x .
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Lax–Oleinik type caracterization of subsolutions (Mitake,
Siconolfi, Tran, Yamada)
Define Li (x , v) = supp〈p, v〉 − Hi (x , p) then

Theorem

1 The function u is a subsolution if and only if for all x , y ∈ TN ,
i ∈ {1, . . . ,m} bounded stopping time τ and admissible strategy
Ξ ∈ K(τ, y − x)

ui (x)−Ei

(
uω(τ)(y)

)
6 Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds

]
.

2 Given b ∈ Rm and x ∈ TN , there exists a subsolution such that
u(x) = b if and only if for all i ∈ {1, . . . ,m}, τ bounded stopping
time and Ξ ∈ K(τ, 0) admissible strategy

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
> 0.
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Dynamical caracterization of the Aubry set (Ibrahim,
Siconolfi, Zabad)

Theorem

The following assertions are equivalent:

1 A point x is in the Aubry set ;

2 The following relation holds for some b ∈ Rm and some
i ∈ {1, . . . ,m}:

inf
τ�1

Ξ∈K(τ,0)

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
= 0

3 The following relation holds for some b ∈ Rm and all i ∈ {1, . . . ,m}:

inf
τ�1

Ξ∈K(τ,0)

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
= 0

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 22 / 28



Dynamical caracterization of the Aubry set (Ibrahim,
Siconolfi, Zabad)

Theorem

The following assertions are equivalent:

1 A point x is in the Aubry set ;

2 The following relation holds for some b ∈ Rm and some
i ∈ {1, . . . ,m}:

inf
τ�1

Ξ∈K(τ,0)

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
= 0

3 The following relation holds for some b ∈ Rm and all i ∈ {1, . . . ,m}:

inf
τ�1

Ξ∈K(τ,0)

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
= 0

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 22 / 28



Dynamical caracterization of the Aubry set (Ibrahim,
Siconolfi, Zabad)

Theorem

The following assertions are equivalent:

1 A point x is in the Aubry set ;

2 The following relation holds for some b ∈ Rm and some
i ∈ {1, . . . ,m}:

inf
τ�1

Ξ∈K(τ,0)

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
= 0

3 The following relation holds for some b ∈ Rm and all i ∈ {1, . . . ,m}:

inf
τ�1

Ξ∈K(τ,0)

Ei

[ ∫ τ(ω)

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
+ c0ds − bi + bω(τ)

]
= 0

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 22 / 28



Lax–Oleinik for EHJ (Davini, Siconolfi, Z.)

Theorem

Let u0 be a Lipschitz initial data, and t > 0, i ∈ {1, . . . ,m}, then

(
S(t)u0

)
i
(x) = min

Ξ
Ei

[
uω(t)

(
I(Ξ, ω, t)

)
+

∫ t

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
ds
]
.
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Idea of proof I: inequality

Let Ξ be an admissible strategy, t, h > 0. Write

f (t) = Ei

[
uω(t)

(
I(Ξ, ω, t)

)]
. Write

f (t + h)− f (t)

h
= Ei

(
ψh(ω)

)
+ Ei

(
φh(ω)

)
where

ψh(ω) :=
uω(t+h)

(
t, I(Ξ, ω, t)

)
− uω(t)

(
t, I(Ξ, ω, t)

)
h

ϕh(ω) :=
uω(t+h)

(
t + h, I(Ξ, ω, t + h)

)
− uω(t+h)

(
t, I(Ξ, ω, t)

)
h

.
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Idea of proof II: inequality

Compute that

Ei

(
ψh(ω)

)
→ −Ei

[
(Bu)ω(t)

(
t, I(Ξ, ω, t)

)]
.

and that (when well defined)

Ei

(
φh(ω)

)
→ Ei

[
∂tuω(t) + Dxuω(t) · Ξ(ω, t)

]
.

Combined with the Fenchel inequality :
−Dxuω(t)·Ξ(ω, t) 6 Hω(t)(I(Ξ, ω, t),Dxuω(t))+Lω(t)

(
I(Ξ, ω, t),−Ξ(ω, t)

)
and by integrating between 0 and t yields

(
S(t)u0

)
i
(x) 6 Ei

[
uω(t)

(
I(Ξ, ω, t)

)
+

∫ t

0
Lω(s)

(
x + I(Ξ)(s),−Ξ(s)

)
ds
]
.
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Idea of proof: equality

For the equality, one needs to find a control such that the Fenchel
inequality is an equality, which means that almost everywhere,

−Ξ(ω, t) = ∂pHω(t)(I(Ξ, ω, t),Dxuω(t))

The optimal Ξ is constructed using the fact that each ui solves an
equation of the form

∂tui + Gi (t, x ,Dxui ) = 0.
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This should give new insights on known (or not) results such as:

vanishing discount problem (with Davini),

long time behavior,

...

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30th 2016 27 / 28



Thank you for your attention!
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