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Weakly coupled systems of Hamilton-Jacobi equations

Evolution equation

Ju; = _
a% + Hi(x, Dxur) + 3 b(x)u(£,x) =0 in (0,400) x TV.  (EHJ)
j=1
for i € {1,..., m}, with initial conditions u;(0, x) = u?(x) where the initial

conditions are Lipschitz continuous.
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Weakly coupled systems of Hamilton-Jacobi equations

Evolution equation

m

Ou; :
a% + Hi(x, Dxur) + 3 b(x)u(£,x) =0 in (0,400) x TV.  (EHJ)
j=1
for i € {1,..., m}, with initial conditions u;(0, x) = u?(x) where the initial

conditions are Lipschitz continuous.
In matrix notations:

% + H(x, Dyu) + B(x)u =0,

where B(x) = (bjj(x)) 1<ij<m and H(x, Dxu) = (H;i(x, Dxu;)) 1<i<m:
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Weakly coupled systems of Hamilton-Jacobi equations Il

Stationary equation

Hi(x, Dei) + Y bij(x)uj(x) = ¢ in (0,+00) x TV, (SHJ)
j=1

for i € {1,...,m}, and some c € R.
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Weakly coupled systems of Hamilton-Jacobi equations Il

Stationary equation

Hi(x, Dei) + Y bij(x)uj(x) = ¢ in (0,+00) x TV, (SHJ)
j=1

for i € {1,...,m}, and some c € R.
In matrix notations:

H(x, Dxu) + B(x)u = c1.

All considered functions will be at least continuous .
All solutions, subsolutions, supersolutions are meant in the viscosity sense.
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The Hypotheses

@ The Hamiltonians :
(H1)  H;: TV xR¥N - R s continuous ;
(H2)  p+ Hi(x,p) is strictly convex on RN for any x € M;
(H3)  there exist two superlinear functions «, 8 : Ry — R such that

a(p) < Hi(x.p) < B(lpl)  forall (x,p) € M x V.
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The Hypotheses

@ The Hamiltonians :
(H1)  H;: TV xR¥N - R s continuous ;
(H2)  prs Hi(x,p) s strictly convex on RN for any x € M;
(H3)  there exist two superlinear functions «, 8 : Ry — R such that

a(p) < Hi(x.p) < B(lpl)  forall (x,p) € M x V.

@ The coupling matrix :
» The function x — B(x) is continuous ,

» b >0, b;<0forj#i, > bj>0foranyie{l,...,m}.
j=1

m
» It is degenerate : > bj=0forany i=1,...,m.
j=1

» B(x)isirreducible : VZ C {1,...,m}, JieZ, &¢I, b;j#0.
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Why those hypotheses?

@ The hypotheses on the H; are standard in weak KAM theory. They
allow usually to use variational arguments with the use of the
Lax—Oleinik formula, which involves the Lagrangian.
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Why those hypotheses?

@ The hypotheses on the H; are standard in weak KAM theory. They
allow usually to use variational arguments with the use of the
Lax—Oleinik formula, which involves the Lagrangian.

o First two hypotheses on B allow to obtain a comparison principle
(Engler-Lenhart 91 on monotonous systems, Camilli-Ley-Loreti 10):

Theorem

Let ug be a Lipschitz initial data and w, v : ([O, T) x ’]I‘N)m be a
subsolution and a supersolution of EHJ, then w < v .
In particular there exists a unique solution u to EHJ.

We denote S(t)up = u(t,-).
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Why those hypotheses?l|

@ The degeneracy hypothesis implies that 1 € Ker B. In particular sets
of solutions and subsolutions are invariant by addition of constant
vectors : k1, keR.
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Why those hypotheses?I|

@ The degeneracy hypothesis implies that 1 € Ker B. In particular sets
of solutions and subsolutions are invariant by addition of constant
vectors : k1, keR.

@ Irreducibility equivalent to for all i, there is n such that B,g? %0 : the
system cannot be split, all equations communicate. Ker B = R1 .

Irreducibility implies a priori compactness :

Proposition

Let c € R, there exists a constant K such that if u verifies
H(x, Dyu) + B(x)u < c1, then each u; is K—Lipschitz and
max uj(x) — min uj(y) < K.

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 9 /28



Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:
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Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant ¢y such that the stationary equation

H(x, Dyu) + B(x)u = col admits solutions.

Solutions to this equation are called weak KAM solutions and the constant
Co Is the critical constant .

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 10 / 28



Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant ¢y such that the stationary equation

H(x, Dyu) + B(x)u = col admits solutions.

Solutions to this equation are called weak KAM solutions and the constant
Co Is the critical constant .

It should be noted that stationary and evolutionary equations are linked.

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 10 / 28



Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant ¢y such that the stationary equation

H(x, Dyu) + B(x)u = col admits solutions.

Solutions to this equation are called weak KAM solutions and the constant
Co Is the critical constant .

It should be noted that stationary and evolutionary equations are linked.

@ uis a weak KAM solution if and only if t — S(t)u + tcg is constant .

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 10 / 28



Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant ¢y such that the stationary equation

H(x, Dyu) + B(x)u = col admits solutions.

Solutions to this equation are called weak KAM solutions and the constant
Co Is the critical constant .

It should be noted that stationary and evolutionary equations are linked.
@ uis a weak KAM solution if and only if t — S(t)u + tcg is constant .

@ u is a critical subsolution : H(x, Dyu) + B(x)u < ¢o1 if and only if
t — S(t)u + tcg is non—decreasing .
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Weak KAM Theorem

Those are exactly the ingredients to prove the weak KAM Theorem:

Theorem

There exists a unique constant ¢y such that the stationary equation

H(x, Dyu) + B(x)u = col admits solutions.

Solutions to this equation are called weak KAM solutions and the constant
Co Is the critical constant .

It should be noted that stationary and evolutionary equations are linked.
@ uis a weak KAM solution if and only if t — S(t)u + tcg is constant .

@ u is a critical subsolution : H(x, Dyu) + B(x)u < ¢o1 if and only if
t — S(t)u + tcg is non—decreasing .

@ In particular, S(t)u is a critical subsolution for all t > 0.
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Classical weak KAM theory

It is a particular case of systems with one equation, one Hamiltonian
H; = H. Assume it is Lipschitz in this slide.
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Classical weak KAM theory

It is a particular case of systems with one equation, one Hamiltonian
Hi = H. Assume it is Lipschitz in this slide.

A subsolution is a Lipschitz function u: TV — R such that

H(x, Dyu) < co almost everywhere.

The Aubry set A is defined by, and verifies the following properties:

@ if x € A, any subsolution u is differentiable at x and H(x, Dyu) = ¢ .

@ (Fathi-Siconolfi) there exists a C! subsolution u such that
H(x, Dxu) < ¢ if x ¢ A.
© if two weak KAM solutions coincide on A, they are equal.
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Classical weak KAM theory

It is a particular case of systems with one equation, one Hamiltonian
Hi = H. Assume it is Lipschitz in this slide.

A subsolution is a Lipschitz function u: TV — R such that

H(x, Dyu) < co almost everywhere.

The Aubry set A is defined by, and verifies the following properties:

@ if x € A, any subsolution u is differentiable at x and H(x, Dyu) = ¢ .

@ (Fathi-Siconolfi) there exists a C! subsolution u such that
H(x, Dxu) < ¢ if x ¢ A.

© if two weak KAM solutions coincide on A, they are equal.

Goal: recover those results for systems (no dynamical or variational tools.
Only PDE methods) .

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 11 /28



Critical subsolutions

Let us set S the set of u critical subsolutions : are equivalent
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Critical subsolutions

Let us set S the set of u critical subsolutions : are equivalent
e H(x, Dyu) + B(x)u < ¢yl in the viscosity sense ,
@ u Lipschitz and H(x, Dyu) + B(x)u < ¢yl almost everywhere ,
e t+— S(t)u+ te is non—decreasing .

the second point depends highly on convexity of the H;.
The set S is closed and convex .
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The Aubry set

Theorem (Davini-Z.)

There exists a non-empty closed set A C TN such that:
Q forallue S andt >0, S(t)u(x)+ tcg = u(x) .
Q@ there exists a subsolution @i, C* on TN\ A such that

vx € TN\ A, H(x, Dyii) + B(x)ii < col.
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The Aubry set

Theorem (Davini-Z.)

There exists a non-empty closed set A C TN such that:
Q forallue S andt >0, S(t)u(x) + tcg = u(x) .
Q@ there exists a subsolution @i, C* on TN\ A such that

Vx e TN\ A, H(x, Dyii) + B(x)ii < col.

In the second point, strict inequalities hold for all components. In
particular, if x ¢ A, for all t > 0, S(t)ii(x) + tcp > Gi(x) .
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The Aubry set

Theorem (Davini-Z.)

There exists a non-empty closed set A C TN such that:
Q forallue S andt >0, S(t)u(x) + tcg = u(x) .
Q@ there exists a subsolution @i, C* on TN\ A such that

Vx e TN\ A, H(x, Dyii) + B(x)ii < col.

In the second point, strict inequalities hold for all components. In
particular, if x ¢ A, for all t > 0, S(t)ii(x) + tcp > Gi(x) .

Open question

Does there exist a C! subsolution?
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Properties of the Aubry set

It is only defined on the base TN1 Same for all components of the system.
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If ¢ < o, no function verifies H(x, Dyu) + B(x)u < c1.
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Properties of the Aubry set

It is only defined on the base TN1 Same for all components of the system.
If ¢ < o, no function verifies H(x, Dyu) + B(x)u < c1.
It entails some rigidity for the critical equation:

Proposition

Q ifuandv areinS and x € A, then (u—v)(x) € R1.
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If ¢ < o, no function verifies H(x, Dyu) + B(x)u < c1.
It entails some rigidity for the critical equation:

Proposition
Q ifuandv areinS and x € A, then (u—v)(x) € R1.

@ (uniqueness set) if u and v are weak KAM solutions which are equal
on A then they coincide.
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Properties of the Aubry set

It is only defined on the base TN1 Same for all components of the system.
If ¢ < o, no function verifies H(x, Dyu) + B(x)u < c1.
It entails some rigidity for the critical equation:
Proposition
Q ifuandv areinS and x € A, then (u—v)(x) € R1.

@ (uniqueness set) if u and v are weak KAM solutions which are equal
on A then they coincide.

Open question

Are subsolutions differentiable on the Aubry set?
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A motivating example a la Namah—Roquejoffre (Camilli,
Ley, Loreti, N'guyen)

Assume each Hamiltonian is of the form H;(x, p) = Fi(x, p) — fi(x) with

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 15 / 28



A motivating example a la Namah—Roquejoffre (Camilli,
Ley, Loreti, N'guyen)

Assume each Hamiltonian is of the form H;(x, p) = Fi(x, p) — fi(x) with

@ F; strictly convex and superlinear,

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 15 / 28



A motivating example a la Namah—Roquejoffre (Camilli,
Ley, Loreti, N'guyen)

Assume each Hamiltonian is of the form H;(x, p) = Fi(x, p) — fi(x) with
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Assume each Hamiltonian is of the form H;(x, p) = Fi(x, p) — fi(x) with
@ F; strictly convex and superlinear,
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o f; >0and Nf {0} # 2.
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A motivating example a la Namah—Roquejoffre (Camilli,
Ley, Loreti, N'guyen)

Assume each Hamiltonian is of the form H;(x, p) = Fi(x, p) — fi(x) with
@ F; strictly convex and superlinear,
e F; >0 and Fi(x,0) =0,
o f; >0and Nf {0} # 2.

Q =0,
9 A=nf"o},
@ if ue S and x € A then u(x) € R1.

Theorem (Camilli, Ley, Loreti, N'guyen)

For any ug, the solution S(t)ug to EHJ converges to a weak KAM solution
as t — +oo.
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Classical Aubry Mather Theory

Define L(x,v) = sup,(p, v) — H(x, p) then if v : [0,£] — T is a loop ,

t
/o L(’y,’j/) > —tq.
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Classical Aubry Mather Theory

Define L(x,v) = sup,(p, v) — H(x, p) then if v : [0, t] — TN is a loop ,
t
/ L(Vvly) 2 *tCO-
0

A point x € A if and only if there are loops v, : [0, t,] — TN with
Yn(0) = vn(tn) = x and t, > 1 such that

tn
/ L(’ym"y,,) + thco — 0.
0
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Independant coupling matrices and Markov processes

We assume until the end that B(x) = B does not depend on x .
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Independant coupling matrices and Markov processes

We assume until the end that B(x) = B does not depend on x .

Recall: bj >0, by <O0forj#i, > bj=0foranyic{l,...,m}.
j=1
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Independant coupling matrices and Markov processes

We assume until the end that B(x) = B does not depend on x .

m

Recall: bj >0, by <O0forj#i, > bj=0foranyic{l,...,m}.
j=1

It is equivalent to: Vt > 0, e~ 8 is a stochastic matrix (e~*81 = 1).
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Independant coupling matrices and Markov processes

We assume until the end that B(x) = B does not depend on x .

m

Recall: bj >0, by <O0forj#i, > bj=0foranyic{l,...,m}.
j=1
It is equivalent to: Vt > 0, e~ 8 is a stochastic matrix (e~*81 = 1).

@ Let D be the space of cadlag paths w : [0,400) — {1,..., m}.
o Let D(RV) be the space of cadlag paths w : [0, +00) — RN,
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Independant coupling matrices and Markov processes

We assume until the end that B(x) = B does not depend on x .

m

Recall: bj >0, by <O0forj#i, > bj=0foranyic{l,...,m}.
j=1

It is equivalent to: Vt > 0, e~ 8 is a stochastic matrix (e~*81 = 1).

@ Let D be the space of cadlag paths w : [0, +o0) — {1,..., m}.
o Let D(RV) be the space of cadlag paths w : [0, +00) — RN,
@ There exists a Probability measure P on D such that for t, h > 0,
i #
P(w(t+h)=j | w(t)=1i)=—hbj+ o(h).
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Stopping times and admissible strategies

@ A stopping time 7 : D — [0, 400) is a measurable function (random
variable ) adapted to the natural filtration on D .
Roughly speaking: if "J[lo,T] = w[zoﬂ and 7(w!) < T then
7(w!) = 7(w?).

o An admissible strategy is a random variable : = : D — D(RM) which
is

» locally (in time) bounded: for all t > 0 there is R > 0 such that
Z(w)(s) < R, fora.e. wand s < t.

» adapted to the natural filtration on D or non anticipating . This means
that wiy 1) = wfy 77 implies =(w')o, 7 = =(w?)j0,7] -
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Trajectories

Given an admissible strategy , define its random trajectory by

I(Z,w, t) = /0f =(w, s)ds.

If 7 is a bounded stopping time and x € TV, define K(7, x) as the set of
trajectories reaching x at 7 meaning

Ywe D, I(Z,w,7(w))=x.
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Lax—Oleinik type caracterization of subsolutions (Mitake,

Siconolfi, Tran, Yamada)
Define L;(x,v) = sup,(p, v) — Hi(x, p) then
Theorem

@ The function u is a subsolution if and only if for all x,y € TN,
i € {1,...,m} bounded stopping time T and admissible strategy
= e K(r,y —x)

7(w)
ui(x) = Ei(uury(y)) < Ei [/0 Lus)(x +Z(Z)(s), —=(9)) + CodS} :
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Lax—Oleinik type caracterization of subsolutions (Mitake,
Siconolfi, Tran, Yamada)

Define Li(x,v) = supp<p, v) — Hi(x, p) then

Theorem

@ The function u is a subsolution if and only if for all x,y € TN,
i € {1,...,m} bounded stopping time T and admissible strategy
= e K(r,y —x)

7(w)
ui(x) = Ei(uury(y)) < Ei [/0 Lus)(x +Z(Z)(s), —=(9)) + CodS} :

@ Given b € R™ and x € TN, there exists a subsolution such that
u(x) = b if and only if for all i € {1,..., m}, 7 bounded stopping
time and = € K(7,0) admissible strategy

7(w)
EI[A Lw(s) (X "‘I(E)(S)v _E(S)) aF CodS = b,‘ =+ bw(T):| 2 0.

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 21 /28



Dynamical caracterization of the Aubry set (lbrahim,
Siconolfi, Zabad)

Theorem

The following assertions are equivalent:
@ A point x is in the Aubry set ;

)
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Dynamical caracterization of the Aubry set (lbrahim,
Siconolfi, Zabad)

Theorem
The following assertions are equivalent:
@ A point x is in the Aubry set ;

@ The following relation holds for some b € R™ and some
ie{l,...,m}:

()
inf  E; [ / Luis) (X +Z(Z)(s), —=(5)) + cods — b; + bw(T)]
0
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Dynamical caracterization of the Aubry set (lbrahim,
Siconolfi, Zabad)

Theorem
The following assertions are equivalent:
@ A point x is in the Aubry set ;

@ The following relation holds for some b € R™ and some
ie{l,...,m}:

()
inf  E; [ /0 Luis) (X +Z(Z)(s), —=(5)) + cods — b; + bw(T)] -y

© The following relation holds for some b € R™ and all i € {1,..., m}:

m(w)
inf [E; |:/ Lw(s) (X +I(E)(S), —E(S)) + cpds — b; + bw(r)] =0
0

4
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Lax—Oleinik for EHJ (Davini, Siconolfi, Z.)

Theorem
Let u® be a Lipschitz initial data, and t >0, i € {1,..., m}, then

(S(t)u0) (x) = minE; [uw(t) (Z(Z,w, t))

+ [ Lo (x+ ZE)0) ~2(6)) ]

M. Zavidovique (UPMC ) Weak KAM for systems Rennes, May 30" 2016 23 /28



|dea of proof I: inequality

Let = be an admissible strategy, t, h > 0. Write
f(t)=E; [Uw(t) (Z(Z,w, t))} Write

AN =IO g () + Ei(onle)
where
_ Uu(t4h) (t,I(E, w, t)) = Uy(t) (t,I(E, w, t))
wh(w) = ) h )
onl) Ug(ern) (E+ M I(Z, w, t + Z)) — Uy(erm (6, Z(Z, w, t))‘
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|dea of proof Il: inequality

Compute that

E; (1/}/7((,0)) — —E,'[(Bu)w(t)(t, I(E,w, t))]
and that (when well defined)

E; ((bh(w)) — E; [8tuw(t) + Dxuw(t) . E(w, t)]
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|dea of proof Il: inequality

Compute that

E; (1#/,((.;))) — —E; [(Bu)w(t) (t,I(E, w, t))] .

and that (when well defined)

E; (¢h(w)) — E; [8tuw(t) + Dxuw(t) . E(w, t)]

Combined with the Fenchel inequality :

_Dqu(t)'E(wv t) < Hw(t)(I(Ea W, t)> Dxuw(t))+Lw(t) (I(Ea W, t)? —E(w, t))
and by integrating between 0 and t yields

(S(t)uo)i(x) < E; [Uw(t) (I(E,w, t)) + /0 Lw(s) (X + I(E)(S), —E(s))ds} .
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ldea of proof: equality

For the equality, one needs to find a control such that the Fenchel
inequality is an equality, which means that almost everywhere,

—=(w, t) = 8pr(t)(I(E, w, t), Dxuw(t))
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ldea of proof: equality

For the equality, one needs to find a control such that the Fenchel
inequality is an equality, which means that almost everywhere,

—=(w, t) = 8pHu)(t)(I(Ev w, t), Dxuw(t))

The optimal = is constructed using the fact that each u; solves an
equation of the form

Oru; + G,'(t,X, DXU,') =0.
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This should give new insights on known (or not) results such as:
@ vanishing discount problem (with Davini),
@ long time behavior,
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M. Zavidovique (UPMC )

Thank you for your attention!
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